हिंदी

If Sin α + Sin β = a and Cos α + Cos β = B, Show that Sin ( α + β ) = 2 a B a 2 + B 2 - Mathematics

Advertisements
Advertisements

प्रश्न

If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 

संक्षेप में उत्तर

उत्तर

\[a^2 + b^2 = \left( \sin\alpha + \sin\beta \right)^2 + (\cos\alpha + \cos\beta)^2 \]

\[ \Rightarrow a^2 + b^2 = \sin^2 \alpha + \sin^2 \beta + 2\sin\alpha\sin\beta + \cos^2 \alpha + \cos^2 \beta + 2\cos\alpha\cos\beta\]

\[ \Rightarrow a^2 + b^2 = \sin^2 \alpha + \cos^2 \alpha + \sin^2 \beta + \cos^2 \beta + 2\left( \sin\alpha\sin\beta + \cos\alpha\cos\beta \right)\]

\[ \Rightarrow a^2 + b^2 = 2 + 2 \cos(\alpha - \beta) . . . (1)\]
Now,
\[b^2 - a^2 = {(\cos\alpha + \cos\beta)}^2 - \left( \sin\alpha + \sin\beta \right)^2 \]
\[ \Rightarrow b^2 - a^2 = \cos^2 \alpha + \cos^2 \beta - \sin^2 \alpha - \sin^2 \beta + 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta\]
\[ \Rightarrow b^2 - a^2 = ( \cos^2 \alpha - \sin^2 \beta) + ( \cos^2 \beta - \sin^2 \alpha) - 2\cos(\alpha + \beta)\]
\[ \Rightarrow b^2 - a^2 = 2\cos(\alpha + \beta)\cos(\alpha - \beta) + 2\cos(\alpha - \beta)\]
\[ \Rightarrow b^2 - a^2 = \cos(\alpha + \beta)(2 + 2 \cos(\alpha - \beta)) . . . (2)\]
From (1) and (2), we have

\[b^2 - a^2 = \cos(\alpha + \beta)\left( a^2 + b^2 \right) \]

\[ \Rightarrow \frac{b^2 - a^2}{a^2 + b^2} = \cos(\alpha + \beta)\]
\[\Rightarrow \sin\left( \alpha + \beta \right) = \sqrt{1 - \cos^2 (\alpha + \beta)}\]
\[ \Rightarrow \sin\left( \alpha + \beta \right) = \sqrt{1 - \left( \frac{b^2 - a^2}{b^2 + a^2} \right)^2} = \sqrt{\frac{b^4 + a^4 - b^4 - a^4 + 4 a^2 b^2}{\left( b^2 + a^2 \right)^2}}\]
\[ \Rightarrow \sin\left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 28.1 | पृष्ठ २१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that: `sin^2  pi/6 + cos^2  pi/3 - tan^2  pi/4 = -1/2`


Prove that  `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


Find the value of: sin 75°


Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove that: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


Prove that: sin 3x + sin 2x – sin x = 4sin x `cos  x/2 cos  (3x)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A + B)


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
cos (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 


If \[\tan A = \frac{a}{a + 1}\text{ and } \tan B = \frac{1}{2a + 1}\] 


The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is

 

If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].


If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]


Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


The value of tan 75° - cot 75° is equal to ______.


The value of tan3A - tan2A - tanA is equal to ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.


If sinx + cosx = a, then sin6x + cos6x = ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


State whether the statement is True or False? Also give justification.

If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×