हिंदी

The value of tan 75° - cot 75° is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of tan 75° - cot 75° is equal to ______.

विकल्प

  • 23

  • 2+3

  • 2-3

  • 1

MCQ
रिक्त स्थान भरें

उत्तर

The value of tan 75° – cot 75° is equal to 23̲.

Explanation:

The given expression is tan 75° − cot 75°

= sin75cos75 -cos75sin75

= sin275-cos275cos75sin75

= 2sin275-cos2752cos75sin75

= -2cos150sin150

= -2cot150

= -2cot(180-30)

= 2cot30

= 23

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 38 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove the following: cos(π4×x)cos(π4-y)-sin(π4- x)sin(π4 -y)= sin(x+y)


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

tan4x=4tanx(1-tan2x)1-6tan2x+tan4x


Prove that: (cosx +cosy)2+(sinx-siny)2= 4cos2 x+y2


Prove that: (cosx-cosy)2+(sinx-siny)2=4sin2 x-y2


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:

sin (A + B)

 


 If sinA=1213 and sinB=45, where π2 < A < π and 0 < B < π2, find the following:
cos (A + B)


If sinA=35,cosB=1213, where A and B both lie in second quadrant, find the value of sin (A + B).


If sinA=12,cosB=32, where π2 < A < π and 0 < B < π2, find the following:
tan (A + B)


Prove that:
7π12+cosπ12=sin5π12sinπ12


Prove that:

sin(π3x)cos(π6+x)+cos(π3x)sin(π6+x)=1

 


 If tanA=56 and tanB=111, prove that A+B=π4.


If tanA=mm1 and tanB=12m1, then prove that AB=π4.


Prove that:
sin(AB)cosAcosB+sin(BC)cosBcosC+sin(CA)cosCcosA=0

 


If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.

 

If x lies in the first quadrant and cosx=817, then prove that:

cos(π6+x)+cos(π4x)+cos(2π3x)=(312+12)2317

 


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


If angle θ  is divided into two parts such that the tangents of one part is λ times the tangent of other, and ϕ is their difference, then show thatsinθ=λ+1λ1sinϕ

 

Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If tan α=11+2x and tanβ=11+2x+1 then write the value of α + β lying in the interval (0,π2) 


If cot (α + β) = 0, sin (α + 2β) is equal to


The maximum value of sin2(2π3+x)+sin2(2π3x) is


If cos (A − B) =35 and tan A tan B = 2, then


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If sin(x+y)sin(x-y)=a+ba-b, then show that tanxtany=ab [Hint: Use Componendo and Dividendo].


If tanα = 17, tanβ = 13, then cos2α is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.