Advertisements
Advertisements
प्रश्न
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |
उत्तर
Column A | Answers |
(a) sin(x + y) sin(x – y) | (iv) sin2x – sin2y |
(b) cos (x + y) cos (x – y) | (i) cos2x – sin2y |
(c) `cot(pi/4 + theta)` | (ii) `(1 - tan theta)/(1 + tan theta)` |
(d) `tan(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
Explanation:
(a) sin(x + y) sin(x – y) = sin2x – sin2y
(b) cos(x + y) cos(x – y) = cos2x – cos2y
(c) `cot(pi/4 + theta) = (cot pi/4 cot theta - 1)/(cot theta + cot pi/4)`
= `(cot theta - 1)/(cot theta + 1)`
= `(1 - tan theta)/(1 + tan theta)`
(d) `tan(pi/4 + theta) = (tan pi/4 + tan theta)/(1 - tan pi/4 theta)`
= `(1 + tan theta)/(1 - tan theta)`
APPEARS IN
संबंधित प्रश्न
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)
Prove that:
Prove that:
Prove that:
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If sin α + sin β = a and cos α + cos β = b, show that
Prove that:
Prove that:
If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\] lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
The value of tan3A - tan2A - tanA is equal to ______.
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.