Advertisements
Advertisements
प्रश्न
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
Given that: tan(π cosθ) = cot(π sinθ)
⇒ tan(π cosθ) = `tan(pi/2 - pi sin theta)`
⇒ πcosθ = `pi/2 - pi sin theta`
⇒ πcosθ + πsinθ = `pi/2`
⇒ cosθ + sinθ = `1/2`
⇒ `1/sqrt(2) cos theta + 1/sqrt(2) sin theta = 1/(2sqrt(2))`
⇒ `cos pi/4 cos theta + sin pi/4 sin theta = 1/(2sqrt(2))`
⇒ `cos(theta - pi/4) = +- 1/(2sqrt(2))` ......`[because cos(theta - pi/2) "or" cos(pi/4 - theta)]`
APPEARS IN
संबंधित प्रश्न
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°
If \[\tan A = \frac{5}{6}\text{ and }\tan B = \frac{1}{11}\], prove that \[A + B = \frac{\pi}{4}\].
Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]
Prove that:
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that:
\[\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} = \tan 3x \tan x\]
If sin α + sin β = a and cos α + cos β = b, show that
Reduce each of the following expressions to the sine and cosine of a single expression:
24 cos x + 7 sin x
Show that sin 100° − sin 10° is positive.
Write the maximum value of 12 sin x − 9 sin2 x.
If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
If A + B + C = π, then sec A (cos B cos C − sin B sin C) is equal to
If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =
tan 3A − tan 2A − tan A =
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
The value of sin(45° + θ) - cos(45° - θ) is ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`