English

If Tan (A + B) = P and Tan (A − B) = Q, Then Write the Value of Tan 2b. - Mathematics

Advertisements
Advertisements

Question

If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B

Short Note

Solution

\[\tan 2B = \tan(B + B)\]
\[ = \tan(A + B - (A - B))\]
\[ = \frac{\tan(A + B) - \tan(A - B)}{1 + \tan(A + B)\tan(A - B)} \]
\[ = \frac{p - q}{1 + pq} \left[ \because \tan(A + B) = p \text{ and } \tan(A - B) = q \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.3 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.3 | Q 7 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that  `cot^2  pi/6 + cosec  (5pi)/6 + 3 tan^2  pi/6 = 6`


Prove the following:

sin2 6x – sin2 4x = sin 2x sin 10x


Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove that: `(cos x  + cos y)^2 + (sin x - sin y )^2 =  4 cos^2  (x + y)/2`


If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
sin (A − B)


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).


Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


Prove that:

\[\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1\]

 


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.

 

If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:

\[\cos \left( \frac{\pi}{6} + x \right) + \cos \left( \frac{\pi}{4} - x \right) + \cos \left( \frac{2\pi}{3} - x \right) = \left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)\frac{23}{17}\]

 


If sin α sin β − cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.


If tan α = x +1, tan β = x − 1, show that 2 cot (α − β) = x2.


Reduce each of the following expressions to the sine and cosine of a single expression: 

\[\sqrt{3} \sin x - \cos x\] 


Reduce each of the following expressions to the sine and cosine of a single expression: 

24 cos x + 7 sin 


Prove that \[\left( 2\sqrt{3} + 3 \right) \sin x + 2\sqrt{3} \cos x\]  lies between \[- \left( 2\sqrt{3} + \sqrt{15} \right) \text{ and } \left( 2\sqrt{3} + \sqrt{15} \right)\]


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


If a = b \[\cos \frac{2\pi}{3} = c \cos\frac{4\pi}{3}\] then write the value of ab + bc + ca.  


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If 3 sin x + 4 cos x = 5, then 4 sin x − 3 cos x =


tan 3A − tan 2A − tan A =


If A + B + C = π, then \[\frac{\tan A + \tan B + \tan C}{\tan A \tan B \tan C}\] is equal to

 

\[\frac{\cos 10^\circ + \sin 10^\circ}{\cos 10^\circ - \sin 10^\circ} =\]

 


Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


Express the following as the sum or difference of sines and cosines:
 2 cos 7x cos 3x


If cotθ + tanθ = 2cosecθ, then find the general value of θ.


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


State whether the statement is True or False? Also give justification.

If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×