Advertisements
Advertisements
Question
Prove the following:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
Solution
We have, L.H.S. = `(sin x - sin 3x)/(sin^2 x - cos^2 x)`
= `(2sin ((x - 3x)/2) cos ((x + 3x)/2))/(-cos^2x - sin^2x)`
= `(2sin (-x) cos (2x))/(-cos2x)`
= `(- 2sin x cos(2x))/(-cos2x)` [∵ cos2x - sin2x = cos 2x]
= `(-2 sinx)/-1` [∵ cos2x - sin2x = cos 2x]
= 2 sin x = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Evaluate the following:
sin 36° cos 9° + cos 36° sin 9°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
sin (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)
Prove that:
Prove that:
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x
Prove that sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.
If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]
If tan A + tan B = a and cot A + cot B = b, prove that cot (A + B) \[\frac{1}{a} - \frac{1}{b}\].
If sin (α + β) = 1 and sin (α − β) \[= \frac{1}{2}\], where 0 ≤ α, \[\beta \leq \frac{\pi}{2}\], then find the values of tan (α + 2β) and tan (2α + β).
If α + β − γ = π and sin2 α +sin2 β − sin2 γ = λ sin α sin β cos γ, then write the value of λ.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If A + B = C, then write the value of tan A tan B tan C.
If tan \[\alpha = \frac{1}{1 + 2^{- x}}\] and \[\tan \beta = \frac{1}{1 + 2^{x + 1}}\] then write the value of α + β lying in the interval \[\left( 0, \frac{\pi}{2} \right)\]
The value of \[\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}\]
tan 3A − tan 2A − tan A =
If cot (α + β) = 0, sin (α + 2β) is equal to
If tan θ1 tan θ2 = k, then \[\frac{\cos \left( \theta_1 - \theta_2 \right)}{\cos \left( \theta_1 + \theta_2 \right)} =\]
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If tan 69° + tan 66° − tan 69° tan 66° = 2k, then k =
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Express the following as the sum or difference of sines and cosines:
2 sin 4x sin 3x
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
The value of sin(45° + θ) - cos(45° - θ) is ______.
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`