Advertisements
Advertisements
प्रश्न
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
उत्तर
Given that: `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα
By squaring and adding, we get
r2 = `3 + 1 - 2sqrt(3) + 3 + 1 + 2sqrt(3)`
⇒ r2 = 8
⇒ r = `+- 2sqrt(2)`
Now the given equation can be written as
rsinα cosθ + rcosα sinθ = 2
⇒ r(sinα cosθ + cosα sinθ) = 2
⇒ `2sqrt(2) sin(alpha + theta)` = 2
⇒ `sin(alpha + theta) = 2/(2sqrt(2)) = 1/sqrt(2)`
⇒ `sin(alpha + theta) = sin pi/4`
∴ α + θ = `npi + (-1)^n * pi/4` .....(i)
Now `(r sin alpha)/(r cos alpha) = (sqrt(3) - 1)/(sqrt(3) + 1)`
⇒ tanα = `(tan pi/3 - tan pi/4)/(1 + tan pi/4 * tan pi/3)`
⇒ tanα = `tan(pi/3 - pi/4)`
⇒ tanα = `tan pi/12`
∴ α = `pi/12`
Putting the value of α in equation (i) we get
`pi/12 + theta = npi + (-1)^n * pi/4`
∴ θ = `npi + (-1)^n * pi/4 - pi/12`
Hence, the general solution of the given equation is θ = `npi + (-1)^n * pi/4 - pi/12`, n ∈ Z.
APPEARS IN
संबंधित प्रश्न
Prove that `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
Prove the following:
`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) = cot^2 x`
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).
Evaluate the following:
cos 80° cos 20° + sin 80° sin 20°
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)
Prove that:
Prove that:
Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].
If sin α + sin β = a and cos α + cos β = b, show that
Find the maximum and minimum values of each of the following trigonometrical expression:
\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]
If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β).
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to
If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to
Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
The value of tan 75° - cot 75° is equal to ______.
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.