हिंदी

Find the general solution of the equation (3-1)cosθ+(3+1)sinθ = 2 [Hint: Put 3-1 = r sinα, 3+1 = r cosα which gives tanα = tan(π4-π6) α = π12] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]

योग

उत्तर

Given that: `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα

By squaring and adding, we get

r2 = `3 + 1 - 2sqrt(3) + 3 + 1 + 2sqrt(3)`

⇒ r2 = 8

⇒ r = `+-  2sqrt(2)`

Now the given equation can be written as

rsinα cosθ + rcosα sinθ = 2

⇒ r(sinα cosθ + cosα sinθ) = 2

⇒ `2sqrt(2) sin(alpha + theta)` = 2

⇒ `sin(alpha + theta) = 2/(2sqrt(2)) = 1/sqrt(2)`

⇒ `sin(alpha + theta) = sin  pi/4`

∴ α + θ = `npi + (-1)^n * pi/4`  .....(i)

Now  `(r sin alpha)/(r cos alpha) = (sqrt(3) - 1)/(sqrt(3) + 1)`

⇒ tanα = `(tan  pi/3 - tan  pi/4)/(1 + tan  pi/4 * tan  pi/3)`

⇒ tanα = `tan(pi/3 - pi/4)`

⇒ tanα = `tan  pi/12`

∴ α = `pi/12`

Putting the value of α in equation (i) we get

`pi/12 + theta = npi + (-1)^n * pi/4`

∴ θ = `npi + (-1)^n * pi/4 - pi/12`

Hence, the general solution of the given equation is θ = `npi + (-1)^n * pi/4 - pi/12`, n ∈ Z. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise [पृष्ठ ५५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Exercise | Q 29 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that  `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


Prove the following:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


Prove the following:

`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
sin (A + B)


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


If \[\sin A = \frac{1}{2}, \cos B = \frac{12}{13}\], where \[\frac{\pi}{2}\]< A < π and \[\frac{3\pi}{2}\] < B < 2π, find tan (A − B).


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


Prove that:

\[\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1\]

 


Prove that:

\[\sin\left( \frac{3\pi}{8} - 5 \right)\cos\left( \frac{\pi}{8} + 5 \right) + \cos\left( \frac{3\pi}{8} - 5 \right)\sin\left( \frac{\pi}{8} + 5 \right) = 1\]

 


Prove that:
sin2 B = sin2 A + sin2 (A − B) − 2 sin A cos B sin (A − B)


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


If tan x + \[\tan \left( x + \frac{\pi}{3} \right) + \tan \left( x + \frac{2\pi}{3} \right) = 3\], then prove that \[\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1\].


If sin α + sin β = a and cos α + cos β = b, show that

\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]

 


Find the maximum and minimum values of each of the following trigonometrical expression: 

\[5 \cos x + 3 \sin \left( \frac{\pi}{6} - x \right) + 4\]


If sin α − sin β = a and cos α + cos β = b, then write the value of cos (α + β). 


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


If A − B = π/4, then (1 + tan A) (1 − tan B) is equal to 


If \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\alpha = \frac{x}{x + 1}\], then \[\alpha + \beta\] is equal to


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

The value of tan 75° - cot 75° is equal to ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×