हिंदी

If Cos P = 1 7 and Cos Q = 13 14 , Where P and Q Both Are Acute Angles. Then, the Value of P − Q is - Mathematics

Advertisements
Advertisements

प्रश्न

If cosP=17 and cosQ=1314, where P and Q both are acute angles. Then, the value of P − Q is

 

विकल्प

  • π6

     

  • π3

     

  • π4

     

  • π12

     

MCQ

उत्तर

60⁰ = π3

cosP=17,cosQ=1314
 Therefore, sinP=1149=437 and sinQ=1169196=3314

Hence, tanp=43,tanQ=3314

cos(P-Q)=cosPcosQ+sinPsinQ

=17×1314+437×3314

=13+3698

=4998

cos(P-Q)=12

P-Q=cos-1 12

P-Q=60

Hence, the correct answer is option B.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.4 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.4 | Q 9 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that  2sin2 π6+cosec2 7π6cos2 π3=32


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

sinx- sinycosx+cosy=tan x-y2


Prove the following:

sinx-sin3xsin2x-cos2x= 2sinx


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:
sin (A − B)


If sinA=45 and cosB=513, where 0 < A, B<π2, find the value of the following:
cos (A − B)


 If sinA=1213 and sinB=45, where π2 < A < π and 0 < B < π2, find the following:
cos (A + B)


If tanA=34,cosB=941, where π < A < 3π2 and 0 < B <π2, find tan (A + B).

 


If sinA=12,cosB=32, where π2 < A < π and 0 < B < π2, find the following:
tan (A + B)


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


Evaluate the following:
 cos 80° cos 20° + sin 80° sin 20°


If cosA=1213 and cotB=247, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


If tanA=mm1 and tanB=12m1, then prove that AB=π4.


If cos A + sin B = m and sin A + cos B = n, prove that 2 sin (A + B) = m2 + n2 − 2.

 

If x lies in the first quadrant and cosx=817, then prove that:

cos(π6+x)+cos(π4x)+cos(2π3x)=(312+12)2317

 


If tan x + tan(x+π3)+tan(x+2π3)=3, then prove that 3tanxtan3x13tan2x=1.


If sin (α + β) = 1 and sin (α − β) =12, where 0 ≤ α, βπ2, then find the values of tan (α + 2β) and tan (2α + β).


Prove that:

1sin(xa)cos(xb)=cot(xa)+tan(xb)cos(ab)

 


Prove that:

1cos(xa)cos(ab)=tan(xb)tan(xa)sin(ab)

 


If α and β are two solutions of the equation a tan x + b sec x = c, then find the values of sin (α + β) and cos (α + β).

 

Find the maximum and minimum values of each of the following trigonometrical expression:

 12 sin x − 5 cos 


Reduce each of the following expressions to the sine and cosine of a single expression: 

3sinxcosx 


Prove that (23+3)sinx+23cosx  lies between (23+15) and (23+15)


Write the maximum and minimum values of 3 cos x + 4 sin x + 5. 


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


Write the interval in which the value of 5 cos x + 3 cos (x+π3)+3 lies. 


If tan α=11+2x and tanβ=11+2x+1 then write the value of α + β lying in the interval (0,π2) 


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


tan 3A − tan 2A − tan A =


cos10+sin10cos10sin10=

 


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


If tanα=xx+1 and tanα=xx+1, then α+β is equal to


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = k+1k-1 sin Φ


If tanα = mm+ 1, tanβ = 12m+1, then α + β is equal to ______.


If α + β = π4, then the value of (1 + tan α)(1 + tan β) is ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


State whether the statement is True or False? Also give justification.

If cosecx = 1 + cotx then x = 2nπ, 2nπ + π2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.