Advertisements
Advertisements
प्रश्न
Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]
उत्तर
\[ \frac{\pi}{12} = 15^\circ, \frac{\pi}{6} = 30^\circ\]
\[\text{ We know that }45^\circ = 15^\circ + 30^\circ\]
Therefore,
\[\tan\left( 45^\circ \right) = \tan\left( 15^\circ + 30^\circ \right)\]
\[ \Rightarrow 1 = \frac{\tan15^\circ + \tan30^\circ}{1 - \tan15^\circ \tan30^\circ}\]
\[ \Rightarrow 1 - \tan15^\circ \tan30^\circ = \tan15^\circ + \tan30^\circ \]
\[ \Rightarrow 1 = \tan15^\circ + \tan30^\circ + \tan15^\circ \tan30^\circ\]
\[ \Rightarrow \tan15^\circ + \tan30^\circ + \tan15^\circ\tan30^\circ = 1\]
Hence proved .
APPEARS IN
संबंधित प्रश्न
Prove that: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
Prove the following: `cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
Prove the following: `(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
Prove the following:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)]= 1`
Prove the following:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
Prove that: `(cos x + cos y)^2 + (sin x - sin y )^2 = 4 cos^2 (x + y)/2`
Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following:
cos (A − B)
If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A + B)
Prove that
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1
If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:
Prove that:
\[\frac{1}{\sin \left( x - a \right) \sin \left( x - b \right)} = \frac{\cot \left( x - a \right) - \cot \left( x - b \right)}{\sin \left( a - b \right)}\]
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
Find the maximum and minimum values of each of the following trigonometrical expression:
12 cos x + 5 sin x + 4
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
Write the maximum value of 12 sin x − 9 sin2 x.
Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies.
If A + B = C, then write the value of tan A tan B tan C.
If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is
If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If tan (A − B) = 1 and sec (A + B) = \[\frac{2}{\sqrt{3}}\], the smallest positive value of B is
Express the following as the sum or difference of sines and cosines:
2 sin 3x cos x
Express the following as the sum or difference of sines and cosines:
2 cos 7x cos 3x
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
The value of tan3A - tan2A - tanA is equal to ______.
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.