Advertisements
Advertisements
प्रश्न
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
उत्तर
Given that atanθ + bsecθ = c or asinθ + b = c cos θ
Using the identities,
sin θ = `(2tan theta/2)/(1 + tan^2 theta/2)` and cos θ = `(1 - tan^2 theta/2)/(1 + tan^2 theta/2)`
We have, `(a(2tan theta/2))/(1 + tan^2 theta/2) + b = (c(1 - tan^2 theta/2))/(1 + tan^2 theta/2)`
or `(b + c) tan^2 theta/2 + 2a tan theta/2 + b - c` = 0
The above equation is quadratic in `tan theta/2` and hence `tan alpha/2` and `tan beta/2` are the roots of this equation.
Therefore, `tan alpha/2 + tan beta/2 = (-2a)/(b + c)` and `tan alpha/2 tan beta/2 - (b - c)/(b + c)`
Using the identity `tan(alpha/2 + beta/2) = (tan alpha/2 + tan beta/2)/(1 - tan alpha/2 tan beta/2)`
We have, `tan(alpha/2 + beta/2) = ((-2a)/(b + c))/(1 - (b - c)/(b + c))`
= `(-2a)/(2c) = (-a)/c` .....(1)
Again, using another identity
`tan 2 (alpha + beta)/2 = (2tan (alpha + beta)/2)/(1 - tan^2 (alpha + beta)/2)`
We have tan (α + β) = `(2(- a/c))/(1 - a^2/c^2)`
= `(2ac)/(a^2 - c^2)` ......[From (1)]
Alternatively, given that a tanθ + b secθ = c
⇒ (a tanθ – c)2 = b2 (1 + tan2θ)
⇒ a2 tan2θ – 2ac tanθ + c2 = b2 + b2 tan2θ
⇒ (a2 – b2) tan2θ – 2ac tanθ + c2 – b2 = 0 ......(1)
Since α and β are the roots of the equation (1)
So tanα + tanβ = `(2ac)/(a^2 - b^2)`
And tanα tanβ = `(c^2 - b^2)/(a^2 - b^2)`
Therefore, tan (α + β) = `(tan alpha + tan beta)/(1 - tan alpha tan beta)`
= `((2ac)/(a^2 - b^2))/((c^2 - b^2)/(a^2 - b^2))`
= `(2ac)/(a^2 - c^2)`
APPEARS IN
संबंधित प्रश्न
Prove that: `sin^2 pi/6 + cos^2 pi/3 - tan^2 pi/4 = -1/2`
Prove the following:
sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Prove the following:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Prove the following:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
Prove the following:
cos 4x = 1 – 8sin2 x cos2 x
If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)
If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).
If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)
If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)
Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].
If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].
Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]
Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)
Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
Prove that:
Prove that:
If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].
The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is
If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =
If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
The value of sin(45° + θ) - cos(45° - θ) is ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |