हिंदी

If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = 2aca2-c2. - Mathematics

Advertisements
Advertisements

प्रश्न

If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.

योग

उत्तर

Given that atanθ + bsecθ = c or asinθ + b = c cos θ

Using the identities,

sin θ = `(2tan  theta/2)/(1 + tan^2  theta/2)` and cos θ = `(1 - tan^2  theta/2)/(1 + tan^2  theta/2)`

We have, `(a(2tan  theta/2))/(1 + tan^2  theta/2) + b = (c(1 - tan^2  theta/2))/(1 + tan^2  theta/2)`

or `(b + c) tan^2  theta/2 + 2a tan  theta/2 + b - c` = 0

The above equation is quadratic in `tan  theta/2` and hence `tan  alpha/2` and `tan  beta/2` are the roots of this equation.

Therefore, `tan  alpha/2 + tan  beta/2 = (-2a)/(b + c)` and `tan  alpha/2  tan  beta/2 - (b - c)/(b + c)` 

Using the identity `tan(alpha/2 + beta/2) = (tan  alpha/2 + tan  beta/2)/(1 - tan  alpha/2 tan   beta/2)`

We have, `tan(alpha/2 + beta/2) = ((-2a)/(b + c))/(1 - (b - c)/(b + c))`

= `(-2a)/(2c) = (-a)/c`  .....(1)

Again, using another identity

`tan 2 (alpha + beta)/2 = (2tan  (alpha + beta)/2)/(1 - tan^2  (alpha + beta)/2)`

We have tan (α + β) = `(2(- a/c))/(1 - a^2/c^2)`

= `(2ac)/(a^2 - c^2)`  ......[From (1)]

Alternatively, given that a tanθ + b secθ = c

⇒ (a tanθ – c)2 = b2 (1 + tan2θ) 

⇒ a2 tan2θ – 2ac tanθ + c2 = b2 + b2 tan2θ

⇒ (a2 – b2) tan2θ – 2ac tanθ + c2 – b2 = 0  ......(1)

Since α and β are the roots of the equation (1)

So tanα + tanβ = `(2ac)/(a^2 - b^2)`

And tanα tanβ = `(c^2 - b^2)/(a^2 - b^2)`

Therefore,  tan (α + β) = `(tan  alpha + tan beta)/(1 - tan alpha tan beta)`

= `((2ac)/(a^2 - b^2))/((c^2 - b^2)/(a^2 - b^2))`

= `(2ac)/(a^2 - c^2)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Solved Examples [पृष्ठ ४४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Solved Examples | Q 11 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that: `sin^2  pi/6 + cos^2  pi/3 - tan^2  pi/4 = -1/2`


Prove the following:

sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x


Prove the following:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) 


Prove the following:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


Prove the following:

cos 4x = 1 – 8sinx cosx


 If \[\sin A = \frac{12}{13}\text{ and } \sin B = \frac{4}{5}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
sin (A + B)


If \[\sin A = \frac{3}{5}, \cos B = - \frac{12}{13}\], where A and B both lie in second quadrant, find the value of sin (A + B).


If \[\cos A = - \frac{24}{25}\text{ and }\cos B = \frac{3}{5}\], where π < A < \[\frac{3\pi}{2}\text{ and }\frac{3\pi}{2}\]< B < 2π, find the following:
cos (A + B)


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
cos (A + B)


Prove that \[\frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} = - 1\].


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that: \[\frac{\sin \left( A + B \right) + \sin \left( A - B \right)}{\cos \left( A + B \right) + \cos \left( A - B \right)} = \tan A\]


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x


Prove that:

\[\frac{1}{\sin \left( x - a \right) \cos \left( x - b \right)} = \frac{\cot \left( x - a \right) + \tan \left( x - b \right)}{\cos \left( a - b \right)}\]

 


Prove that:

\[\frac{1}{\cos \left( x - a \right) \cos \left( a - b \right)} = \frac{\tan \left( x - b \right) - \tan \left( x - a \right)}{\sin \left( a - b \right)}\]

 


If \[\tan\theta = \frac{\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}\] , then show that \[\sin\alpha + \cos\alpha = \sqrt{2}\cos\theta\].


The value of cos (36° − A) cos (36° + A) + cos (54° + A) cos (54° − A) is


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


If cos (A − B) \[= \frac{3}{5}\] and tan A tan B = 2, then


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


The value of sin(45° + θ) - cos(45° - θ) is ______.


3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.


Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×