हिंदी

If x cos θ = ycos(θ+2π3)=zcos(θ+4π3), then find the value of xy + yz + zx. - Mathematics

Advertisements
Advertisements

प्रश्न

If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.

योग

उत्तर

Note that xy + yz + zx = `xyz (1/x + 1/y + 1/z)`.

If we put x cos θ = `y cos (theta + (2pi)/3)`

= `z cos (theta + (4pi)/3)` = k  ...(say)

Then x = `k/costheta`, y = `k/(cos(theta + (2pi)/3)` and z = `k/(cos(theta + (4pi)/3)`

So that `1/x + 1/y + 1/z = 1/"k"[cos theta + cos(theta + (2pi)/3) + cos(theta + (4pi)/3)]`

= `1/k [costheta + costheta cos  (2pi)/3 - sin theta sin  (2pi)/3 + cos theta cos  (4pi)/3 - sin theta sin  (4pi)/3]`

= `1/k[cos theta + cos theta ((-1)/2) - sqrt(3)/2 sin theta - 1/2 cos theta + sqrt(3)/2 sin theta]` 

= `1/k xx 0`

= 0

Hence, xy + yz + zx = 0

shaalaa.com
Sine and Cosine Formulae and Their Applications
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Solved Examples [पृष्ठ ४३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 3 Trigonometric Functions
Solved Examples | Q 10 | पृष्ठ ४३

संबंधित प्रश्न

If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides. 


In triangle ABC, prove the following: 

\[\frac{a - b}{a + b} = \frac{\tan \left( \frac{A - B}{2} \right)}{\tan \left( \frac{A + B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\left( a - b \right) \cos \frac{C}{2} = c \sin \left( \frac{A - B}{2} \right)\]


In any triangle ABC, prove the following: 

\[\sin \left( \frac{B - C}{2} \right) = \frac{b - c}{a} \cos\frac{A}{2}\]

 


In triangle ABC, prove the following: 

\[a^2 \sin \left( B - C \right) = \left( b^2 - c^2 \right) \sin A\]

 


In triangle ABC, prove the following: 

\[\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}\]

 


In triangle ABC, prove the following: 

\[b \cos B + c \cos C = a \cos \left( B - C \right)\]

 


In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]


In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]


In ∆ABC, prove that if θ be any angle, then b cosθ = c cos (A − θ) + a cos (C + θ). 


In ∆ABC, if a2b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P. 


In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\]  show that its area is \[\frac{15\sqrt{3}}{2} sq\].units. 


In ∆ABC, prove the following: \[b \left( c \cos A - a \cos C \right) = c^2 - a^2\]


In ∆ABC, prove the following: 

\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]


In ∆ABC, prove the following:

\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]


In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\]  Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\] 


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\] 



Answer  the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\]  find a

   

Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\]  then show that c = a


Answer  the following questions in one word or one sentence or as per exact requirement of the question.

In a ∆ABC, if sinA and sinB are the roots of the equation  \[c^2 x^2 - c\left( a + b \right)x + ab = 0\]  then find \[\angle C\]  

 


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

In ∆ABC, if a = 8, b = 10, c = 12 and C = λA, find the value of λ


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles ABC


Mark the correct alternative in each of the following: 

In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\]   then c is a root of the equation 


Mark the correct alternative in each of the following:

In any ∆ABC, the value of  \[2ac\sin\left( \frac{A - B + C}{2} \right)\]  is 


Mark the correct alternative in each of the following:

In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×