Advertisements
Advertisements
प्रश्न
In any triangle ABC, prove the following:
उत्तर
Let
\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k\]
Then,
Consider the RHS of the equation
\[RHS = \frac{b - c}{a}\cos\frac{A}{2}\]
\[ = \frac{k\left( \sin B - \sin C \right)}{k\sin A}\cos\left( \frac{\pi - \left( B + C \right)}{2} \right) \left( \because A + B + C = \pi \right) \]
\[ = \frac{2\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{B + C}{2} \right)}{\sin A}\]
\[ = \frac{\sin\left( \frac{B - C}{2} \right)2\cos\left( \frac{B + C}{2} \right)}{\sin A}\sin\left( \frac{B + C}{2} \right)\]
\[ = \frac{\sin\left( \frac{B - C}{2} \right)\sin\left( B + C \right)}{\sin A}\]
\[ = \frac{\sin\left( \frac{B - C}{2} \right)\sin\left( \pi - A \right)}{\sin A}\]
\[ = \frac{\sin A\sin\left( \frac{B - C}{2} \right)}{\sin A}\]
\[ = \sin\left( \frac{B - C}{2} \right) = LHS\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides.
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\]
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]
In triangle ABC, prove the following:
In ∆ABC, prove that if θ be any angle, then b cosθ = c cos (A − θ) + a cos (C + θ).
If the sides a, b and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]
In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\] show that its area is \[\frac{15\sqrt{3}}{2} sq\].units.
In \[∆ ABC, if a = \sqrt{2}, b = \sqrt{3} \text{ and } c = \sqrt{5}\] show that its area is \[\frac{1}{2}\sqrt{6} sq .\] units.
The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]
In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]
In ∆ABC, prove the following:
\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\]
a cos A + b cos B + c cos C = 2b sin A sin C
In ∆ABC, prove the following:
\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]
In ∆ABC, prove the following:
\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]
In ∆ABC, prove the following:
\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]
In \[∆ ABC, if \angle B = 60°,\] prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]
If in \[∆ ABC, \cos^2 A + \cos^2 B + \cos^2 C = 1\] prove that the triangle is right-angled.
Two ships leave a port at the same time. One goes 24 km/hr in the direction N 38° E and other travels 32 km/hr in the direction S 52° E. Find the distance between the ships at the end of 3 hrs.
Answer the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\] find a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if sinA and sinB are the roots of the equation \[c^2 x^2 - c\left( a + b \right)x + ab = 0\] then find \[\angle C\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In ∆ABC, if a = 8, b = 10, c = 12 and C = λA, find the value of λ.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles A, B, C.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any ∆ABC, find the value of
\[\sum^{}_{}a\left( \text{ sin }B - \text{ sin }C \right)\]
Mark the correct alternative in each of the following:
In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) =
Mark the correct alternative in each of the following:
In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\] then c is a root of the equation
Mark the correct alternative in each of the following:
In a ∆ABC, if \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is
Mark the correct alternative in each of the following:
In any ∆ABC, the value of \[2ac\sin\left( \frac{A - B + C}{2} \right)\] is
Mark the correct alternative in each of the following:
In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.