हिंदी

If the Sides A, B and C of ∆Abc Are in H.P., Prove that Sin 2 a 2 , Sin 2 B 2 and Sin 2 C 2 - Mathematics

Advertisements
Advertisements

प्रश्न

If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]

उत्तर

\[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2} \text{ is a H . P }. \]
\[ \Leftrightarrow \frac{1}{\sin^2 \frac{A}{2}}, \frac{1}{\sin^2 \frac{B}{2}} \text{ and } \frac{1}{\sin^2 \frac{C}{2}} \text{ is an A . P } . \]
\[ \Leftrightarrow \frac{1}{\sin^2 \frac{B}{2}} - \frac{1}{\sin^2 \frac{A}{2}} = \frac{1}{\sin^2 \frac{C}{2}} - \frac{1}{\sin^2 \frac{B}{2}}\]
\[ \Leftrightarrow \frac{\sin^2 \frac{A}{2} - \sin^2 \frac{B}{2}}{\sin^2 \frac{A}{2} \sin^2 \frac{B}{2}} = \frac{\sin^2 \frac{B}{2} - \sin^2 \frac{C}{2}}{\sin^2 \frac{B}{2} \sin^2 \frac{C}{2}}\]
\[ \Leftrightarrow \frac{\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)}{\sin^2 \frac{A}{2}} = \frac{\sin\left( \frac{B + C}{2} \right)\sin\left( \frac{B - C}{2} \right)}{\sin^2 \frac{C}{2}}\]
\[ \Leftrightarrow \frac{\cos\left( \frac{C}{2} \right)\sin\left( \frac{A - B}{2} \right)}{\sin^2 \frac{A}{2}} = \frac{\cos\left( \frac{A}{2} \right)\sin\left( \frac{B - C}{2} \right)}{\sin^2 \frac{C}{2}} \left[ As, A + B + C = \pi \right]\]
\[ \Leftrightarrow \sin^2 \frac{C}{2}\cos\left( \frac{C}{2} \right)\sin\left( \frac{A - B}{2} \right) = \sin^2 \frac{A}{2}\cos\left( \frac{A}{2} \right)\sin\left( \frac{B - C}{2} \right)\]
\[ \Leftrightarrow 2\sin\frac{C}{2}\sin\frac{C}{2}\cos\left( \frac{C}{2} \right)\sin\left( \frac{A - B}{2} \right) = 2\sin\frac{A}{2}\sin\frac{A}{2}\cos\left( \frac{A}{2} \right)\sin\left( \frac{B - C}{2} \right)\]
\[ \Leftrightarrow \sin\frac{C}{2}\sin C \sin\left( \frac{A - B}{2} \right) = \sin\frac{A}{2}\sin A\sin\left( \frac{B - C}{2} \right) \left[ \because \sin2\theta = 2sin\thetacos\theta \right]\]
\[ \Leftrightarrow \sin C \cos\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right) = \sin A \cos\left( \frac{B + C}{2} \right) \sin\left( \frac{B - C}{2} \right) \left[ As, A + B + C = \pi \right]\]
\[ \Leftrightarrow \sin C\frac{\left( \sin A - \sin B \right)}{2} = \sin A\frac{\left( \sin B - \sin C \right)}{2} \left[ \sin C - \sin D = 2\cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right) \right]\]
\[ \Leftrightarrow \sin C\left( \sin A - \sin B \right) = \sin A\left( \sin B - \sin C \right)\]
\[ \Leftrightarrow ck\left( ak - bk \right) = ak\left( bk - ck \right) \left( \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = k \left( say \right) \right)\]
\[ \Leftrightarrow ca - cb = ab - ac\]
\[ \Leftrightarrow 2ac = ab + bc\]
\[ \Leftrightarrow \frac{2}{b} = \frac{1}{c} + \frac{1}{a} \left[ \text{ multiplying both the sides by abc } \right]\]
\[ \Leftrightarrow \text{ a, b, c are in H . P } . \]

shaalaa.com
Sine and Cosine Formulae and Their Applications
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Sine and cosine formulae and their applications - Exercise 10.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 31 | पृष्ठ १४

संबंधित प्रश्न

If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides. 


In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C


In triangle ABC, prove the following:

\[\frac{c}{a - b} = \frac{\tan\left( \frac{A}{2} \right) + \tan \left( \frac{B}{2} \right)}{\tan \left( \frac{A}{2} \right) - \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\] 


In triangle ABC, prove the following: 

\[a^2 \sin \left( B - C \right) = \left( b^2 - c^2 \right) \sin A\]

 


In triangle ABC, prove the following: 

\[\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}\]

 


In triangle ABC, prove the following: 

\[a \left( \sin B - \sin C \right) + \left( \sin C - \sin A \right) + c \left( \sin A - \sin B \right) = 0\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 \sin \left( B - C \right)}{\sin A} + \frac{b^2 \sin \left( C - A \right)}{\sin B} + \frac{c^2 \sin \left( A - B \right)}{\sin C} = 0\]

 


In triangle ABC, prove the following: 

\[a^2 \left( \cos^2 B - \cos^2 C \right) + b^2 \left( \cos^2 C - \cos^2 A \right) + c^2 \left( \cos^2 A - \cos^2 B \right) = 0\]

 


In triangle ABC, prove the following:

\[\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} - \frac{1}{a^2} - \frac{1}{b^2}\]

 


In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]


In ∆ABC, prove that if θ be any angle, then b cosθ = c cos (A − θ) + a cos (C + θ). 


The upper part of a tree broken by the wind makes an angle of 30° with the ground and the distance from the root to the point where the top of the tree touches the ground is 15 m. Using sine rule, find the height of the tree. 


At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain. 


A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\] 


In \[∆ ABC, if a = \sqrt{2}, b = \sqrt{3} \text{ and } c = \sqrt{5}\] show that its area is \[\frac{1}{2}\sqrt{6} sq .\] units.


The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]


In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]


In ∆ABC, prove the following:

\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\] 

 


a cos + b cos B + c cos C = 2sin sin 


In ∆ABC, prove the following:

\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]


In ∆ABC, prove the following: 

\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]


In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\]  Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\] 


In \[∆ ABC \text{ if } \cos C = \frac{\sin A}{2 \sin B}\] prove that the triangle is isosceles.  


Answer  the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\]  find a

   

Answer the following questions in one word or one sentence or as per exact requirement of the question.  

In ∆ABC, if a = 8, b = 10, c = 12 and C = λA, find the value of λ


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

If the sides of a triangle are proportional to 2, \[\sqrt{6}\] and \[\sqrt{3} - 1\] find the measure of its greatest angle. 


Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] = 


Mark the correct alternative in each of the following: 

In a ∆ABC, if a = 2, \[\angle B = 60°\]  and\[\angle C = 75°\] 

 


Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is 


Mark the correct alternative in each of the following:

In any ∆ABC, the value of  \[2ac\sin\left( \frac{A - B + C}{2} \right)\]  is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×