Advertisements
Advertisements
प्रश्न
In triangle ABC, prove the following:
उत्तर
Let
\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k\]
Then,
Consider the LHS of the equation
\[LHS = \frac{a^2 \sin\left( B - C \right)}{\sin A} + \frac{b^2 \sin\left( C - A \right)}{\sin B} + \frac{c^2 \sin\left( A - B \right)}{\sin C}\]
\[ = \frac{k^2 \sin^2 A\sin\left( B - C \right)}{\sin A} + \frac{k^2 \sin^2 B\sin\left( C - A \right)}{\sin B} + \frac{k^2 \sin^2 C\sin\left( A - B \right)}{\sin C} \]
\[ = k^2 \sin A\sin\left( B - C \right) + k^2 \sin B\sin\left( C - A \right) + k^2 \sin C\sin\left( A - B \right) \]
\[ = k^2 \left[ \sin A\left( \sin B\cos C - \sin C\cos B \right) + \sin B\left( \sin C\cos A - \sin A\cos C \right) + \sin C\left( \sin A\cos B - \sin B\cos A \right) \right] \]
\[ = k^2 \left( \sin A\sin B\cos C - \sin A\sin C\cos B + \sin B\sin C\cos A - \sin A\sin B\cos C + \sin A\sin C\cos B - \sin C\sin B\cos A \right)\]
\[ = 0 = RHS\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In any triangle ABC, prove the following:
In triangle ABC, prove the following:
\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\]
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]
In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\]
In ∆ABC, if a2, b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P.
A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\]
If the sides a, b and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]
In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\] show that its area is \[\frac{15\sqrt{3}}{2} sq\].units.
In \[∆ ABC, if a = \sqrt{2}, b = \sqrt{3} \text{ and } c = \sqrt{5}\] show that its area is \[\frac{1}{2}\sqrt{6} sq .\] units.
In ∆ABC, prove the following: \[b \left( c \cos A - a \cos C \right) = c^2 - a^2\]
a cos A + b cos B + c cos C = 2b sin A sin C
In ∆ABC, prove the following:
\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]
In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\] Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\] then show that c = a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If the sides of a triangle are proportional to 2, \[\sqrt{6}\] and \[\sqrt{3} - 1\] find the measure of its greatest angle.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles A, B, C.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any ∆ABC, find the value of
\[\sum^{}_{}a\left( \text{ sin }B - \text{ sin }C \right)\]
Mark the correct alternative in each of the following:
In a ∆ABC, if a = 2, \[\angle B = 60°\] and\[\angle C = 75°\]
Mark the correct alternative in each of the following:
In a ∆ABC, if \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is
Mark the correct alternative in each of the following:
In any ∆ABC, the value of \[2ac\sin\left( \frac{A - B + C}{2} \right)\] is
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.