Advertisements
Advertisements
प्रश्न
\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]
उत्तर
Suppose \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k\]
Consider:
\[a\left( \cos B\cos C + \cos A \right)\]
\[ = k\sin A\left( \cos B\cos C + \cos A \right) \]
\[ = k\left( \sin A\cos B\cos C + \cos A\sin A \right)\]
\[ = k\left[ \frac{1}{2}\cos C\left\{ \sin\left( A + B \right) + \sin\left( A - B \right) \right\} + \sin A\cos A \right]\]
\[ = k\left[ \frac{1}{2}\left\{ \sin\left( A + B \right)\cos C + \sin\left( A - B \right)\cos C \right\} + \sin A\cos A \right]\]
\[ = k\left[ \frac{1}{2}\left\{ \frac{1}{2}\left[ \sin\left( A + B + C \right) + \sin\left( A + B - C \right) + \sin\left( A - B + C \right) + \sin\left( A - B - C \right) \right] \right\} + \sin A\cos A \right]\]
\[ = k\left[ \frac{1}{4}\left\{ sin\pi + \sin\left( \pi - 2C \right) + \sin\left( \pi - 2B \right) - \sin\left( \pi - 2A \right) \right\} + \frac{\sin2A}{2} \right] \left( \because A + B + C = \pi \right)\]
\[ = \frac{k}{4}\left( \sin2C + \sin2B + \sin2A \right) . . . . \left( 1 \right)\]
\[\text{ and } \]
\[b\left( \cos A\cos C + \cos B \right)\]
\[ = k\left( \sin B\cos A\cos C + sinBcosB \right)\]
\[ = k\left[ \frac{1}{2}\cos A\left\{ \sin\left( B + C \right) + \sin\left( B - C \right) \right\} + \frac{\sin2B}{2} \right]\]
\[ = k\left( \frac{1}{2}\left( \sin\left( B + C \right)\cos A + \sin\left( B - C \right)\cos A \right) + \frac{\sin2B}{2} \right)\]
\[ = k\left( \frac{1}{4}\left( \sin\left( B + C + A \right) + \sin\left( B + C - A \right) + \sin\left( B - C + A \right) + \sin\left( B - C - A \right) \right) + \frac{\sin2B}{2} \right)\]
\[ = \frac{k}{4}\left( sin\pi + \sin\left( \pi - 2A \right) + \sin\left( \pi - 2C \right) - \sin\left( \pi - 2B \right) + \frac{\sin2B}{2} \right) \left( \because A + B + C = \pi \right)\]
\[ = \frac{k}{4}\left( \sin2A + \sin2C + \sin2B \right) . . . \left( 2 \right)\]
\[\text{ Similarly }, \]
\[c\left( \cos A\cos B + \cos C \right) = \frac{k}{4}\left( \sin2A + \sin2B + \sin2C \right) . . . \left( 3 \right)\]
From (1), (2) and (3), we get:
\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides.
If in ∆ABC, ∠C = 105°, ∠B = 45° and a = 2, then find b.
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]
In ∆ABC, prove that if θ be any angle, then b cosθ = c cos (A − θ) + a cos (C + θ).
In ∆ABC, if a2, b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P.
The upper part of a tree broken by the wind makes an angle of 30° with the ground and the distance from the root to the point where the top of the tree touches the ground is 15 m. Using sine rule, find the height of the tree.
In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\] show that its area is \[\frac{15\sqrt{3}}{2} sq\].units.
In \[∆ ABC, if a = \sqrt{2}, b = \sqrt{3} \text{ and } c = \sqrt{5}\] show that its area is \[\frac{1}{2}\sqrt{6} sq .\] units.
In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C.
In ∆ABC, prove the following: \[b \left( c \cos A - a \cos C \right) = c^2 - a^2\]
In ∆ABC, prove the following:
\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\]
In ∆ABC, prove the following:
\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]
If in \[∆ ABC, \cos^2 A + \cos^2 B + \cos^2 C = 1\] prove that the triangle is right-angled.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\] find a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles A, B, C.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any ∆ABC, find the value of
\[\sum^{}_{}a\left( \text{ sin }B - \text{ sin }C \right)\]
Mark the correct alternative in each of the following:
In a ∆ABC, if a = 2, \[\angle B = 60°\] and\[\angle C = 75°\]
Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is
Mark the correct alternative in each of the following:
In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) =
Mark the correct alternative in each of the following:
In a ∆ABC, if \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is
Mark the correct alternative in each of the following:
In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]