हिंदी

Mark the Correct Alternative in Each of the Following: in Any ∆Abc, 2(Bc Cosa + Ca Cosb + Ab Cosc) = - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in each of the following: 

In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) = 

विकल्प

  • \[abc\] 

  • \[a + b + c\] 

  • \[a^2 + b^2 + c^2\] 

  • \[\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\]

MCQ

उत्तर

Using cosine rule, we have 

\[2\left( bc\cos A + ca\cos B + ab\cos C \right)\]
\[ = 2bc\left( \frac{b^2 + c^2 - a^2}{2bc} \right) + 2ca\left( \frac{c^2 + a^2 - b^2}{2ca} \right) + 2ab\left( \frac{a^2 + b^2 - c^2}{2ab} \right)\]
\[ = b^2 + c^2 - a^2 + c^2 + a^2 - b^2 + a^2 + b^2 - c^2 \]
\[ = a^2 + b^2 + c^2\] 

Hence, the correct answer is option (c).

shaalaa.com
Sine and Cosine Formulae and Their Applications
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Sine and cosine formulae and their applications - Exercise 10.4 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 10 Sine and cosine formulae and their applications
Exercise 10.4 | Q 4 | पृष्ठ २६

संबंधित प्रश्न

If in ∆ABC, ∠C = 105°, ∠B = 45° and a = 2, then find b


In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C


In triangle ABC, prove the following: 

\[\frac{a - b}{a + b} = \frac{\tan \left( \frac{A - B}{2} \right)}{\tan \left( \frac{A + B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{c}{a + b} = \frac{1 - \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}{1 + \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}\]

 


In any triangle ABC, prove the following: 

\[\sin \left( \frac{B - C}{2} \right) = \frac{b - c}{a} \cos\frac{A}{2}\]

 


In triangle ABC, prove the following: 

\[b \sin B - c \sin C = a \sin \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}\]

 


In triangle ABC, prove the following: 

\[a^2 \left( \cos^2 B - \cos^2 C \right) + b^2 \left( \cos^2 C - \cos^2 A \right) + c^2 \left( \cos^2 A - \cos^2 B \right) = 0\]

 


In triangle ABC, prove the following:

\[\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} - \frac{1}{a^2} - \frac{1}{b^2}\]

 


In triangle ABC, prove the following: 

\[\frac{\cos^2 B - \cos^2 C}{b + c} + \frac{\cos^2 C - \cos^2 A}{c + a} + \frac{co s^2 A - \cos^2 B}{a + b} = 0\]

 


In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]


In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]


In triangle ABC, prove the following: 

\[a \cos A + b\cos B + c \cos C = 2b \sin A \sin C = 2 c \sin A \sin B\]

 


In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 


In ∆ABC, prove that if θ be any angle, then b cosθ = c cos (A − θ) + a cos (C + θ). 


In ∆ABC, if a2b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P. 


In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\]  show that its area is \[\frac{15\sqrt{3}}{2} sq\].units. 


In ∆ABC, prove the following: \[b \left( c \cos A - a \cos C \right) = c^2 - a^2\]


In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]


In ∆ABC, prove the following:

\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\] 

 


a cos + b cos B + c cos C = 2sin sin 


In ∆ABC, prove the following: 

\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]


In ∆ABC, prove the following:

\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\] 



Answer  the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\]  find a

   

Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any ∆ABC, find the value of

\[\sum^{}_{}a\left( \text{ sin }B - \text{ sin }C \right)\]


Mark the correct alternative in each of the following: 

In a ∆ABC, if a = 2, \[\angle B = 60°\]  and\[\angle C = 75°\] 

 


Mark the correct alternative in each of the following: 

In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\]   then c is a root of the equation 


Mark the correct alternative in each of the following: 

In a ∆ABC, if  \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is 


Mark the correct alternative in each of the following:

In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]  


If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×