Advertisements
Advertisements
प्रश्न
In ∆ABC, prove the following:
\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]
उत्तर
\[\text{ LHS }\]
\[ = 4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right)\]
\[ = 4\left[ bc\left( \frac{1 + \cos A}{2} \right) + ca\left( \frac{1 + \cos B}{2} \right) + ab\left( \frac{1 + \cos C}{2} \right) \right]\]
\[ = 2bc + 2bc\cos A + 2ca + 2ca\cos B + 2ab + 2ab\cos C\]
\[ = 2\left( ab + bc + ca \right) + 2bc\left( \frac{b^2 + c^2 - a^2}{2bc} \right) + 2ca\left( \frac{c^2 + a^2 - b^2}{2ca} \right) + 2ab\left( \frac{a^2 + b^2 - c^2}{2ab} \right)\]
\[= 2\left( ab + bc + ac \right) + b^2 + c^2 - a^2 + c^2 + a^2 - b^2 + a^2 + b^2 - c^2 \]
\[ = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac\]
\[ = \left( a + b + c \right)^2 = RHS\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides.
In triangle ABC, prove the following:
\[\left( a - b \right) \cos \frac{C}{2} = c \sin \left( \frac{A - B}{2} \right)\]
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]
\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]
At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain.
A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\]
If the sides a, b and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]
In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\] show that its area is \[\frac{15\sqrt{3}}{2} sq\].units.
In \[∆ ABC, if a = \sqrt{2}, b = \sqrt{3} \text{ and } c = \sqrt{5}\] show that its area is \[\frac{1}{2}\sqrt{6} sq .\] units.
The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]
In ∆ABC, prove the following:
\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]
In ∆ABC, prove the following:
\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\] find a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles A, B, C.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any ∆ABC, find the value of
\[\sum^{}_{}a\left( \text{ sin }B - \text{ sin }C \right)\]
Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] =
Mark the correct alternative in each of the following:
In a ∆ABC, if a = 2, \[\angle B = 60°\] and\[\angle C = 75°\]
Mark the correct alternative in each of the following:
In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) =
Mark the correct alternative in each of the following:
In a ∆ABC, if \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is
Mark the correct alternative in each of the following:
In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]