Advertisements
Advertisements
प्रश्न
In ∆ABC, prove the following:
\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]
उत्तर
\[\text{ Let } \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k . . . \left( 1 \right)\]
\[\text{ LHS } = \sin^3 A\cos\left( B - C \right) + \sin^3 B\cos\left( C - A \right) + \sin^3 C\cos\left( A - B \right)\]
\[ = \sin^2 A\left\{ \sin A\cos\left( B - C \right) \right\} + \sin^2 B\left\{ \sin B\cos\left( C - A \right) \right\} + \sin^2 A\left\{ \sinA\cos\left( A - B \right) \right\}\]
\[ = \frac{a^2}{k^2}\left\{ \sin A\cos\left( B - C \right) \right\} + \frac{b^2}{k^2}\left\{ \sin B\cos\left( C - A \right) \right\} + \frac{c^2}{k^2}\left\{ \sin A\cos\left( A - B \right) \right\} \left[ \text{ from } \left( 1 \right) \right]\]
\[ = \frac{1}{2 k^2}\left[ a^2 \left\{ 2\sin A\cos\left( B - C \right) \right\} + b^2 \left\{ 2\sin B\cos\left( C - A \right) \right\} + c^2 \left\{ 2\sinA\cos\left( A - B \right) \right\} \right]\]
\[ = \frac{1}{2 k^2}\left[ a^2 \left\{ 2\sin\left( \pi - \left( B + C \right) \right)\cos\left( B - C \right) \right\} + b^2 \left\{ 2\sin\left( \pi - \left( A + C \right) \right)\cos\left( C - A \right) \right\} + c^2 \left\{ 2\sin\left( \pi - \left( B + C \right) \right)\cos\left( A - B \right) \right\} \right]\]
\[ = \frac{1}{2 k^2}\left[ a^2 \left\{ 2\sin\left( B + C \right)\cos\left( B - C \right) \right\} + b^2 \left\{ 2\sin\left( C + A \right)\cos\left( C - A \right) \right\} + c^2 \left\{ 2\sin\left( A + B \right)\cos\left( A - B \right) \right\} \right]\]
\[ = \frac{1}{2 k^2}\left[ a^2 \left\{ \sin2B + \sin2C \right\} + b^2 \left\{ \sin2C + \sin2A \right\} + c^2 \left\{ \sin2A + \sin2B \right\} \right]\]
\[ = \frac{1}{2 k^2}\left[ 2 a^2 \left\{ \sin B\cos B + \sin C\cos C \right\} + 2 b^2 \left\{ \sin C\cos C + \sin A\cos A \right\} + 2 c^2 \left\{ \sin A\cos A + \sin B\cos B \right\} \right]\]
\[ = \frac{1}{2 k^3}\left[ 2 a^2 \left\{ k\sin B\cos B + k\sin C\cos C \right\} + 2 b^2 \left\{ k\sin C\cos C + k\sin A\cos A \right\} + 2 c^2 \left\{ k\sin A\cos A + k\sin B\cos B \right\} \right]\]
\[ = \frac{1}{k^3}\left[ a^2 \left\{ b\cos B + c\cos C \right\} + 2 b^2 \left\{ c\cos C + a\cos A \right\} + 2 c^2 \left\{ a\cos A + a\cos B \right\} \right]\]
\[ = \frac{1}{k^3}\left[ ab\left( a\cos B + b\cos A \right) + bc\left( b\cos C + c\cos B \right) + ac\left( a\cos C + c\cos A \right) \right]\]
\[ = \frac{1}{k^3}\left( abc + bca + acb \right)\]
\[ = 3abc \times \frac{1}{k^3}\]
\[ = 3\sin A\sin B\sin C \times \frac{1}{k^3} \times k^3 \]
\[ = 3\sin A\sin B\sin C\]
\[ = \text{ RHS }\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
In triangle ABC, prove the following:
\[\left( a - b \right) \cos \frac{C}{2} = c \sin \left( \frac{A - B}{2} \right)\]
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\]
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]
\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]
In ∆ABC, prove that if θ be any angle, then b cosθ = c cos (A − θ) + a cos (C + θ).
At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain.
A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\]
The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]
In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]
In ∆ABC, prove the following:
\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\]
In ∆ABC, prove that \[a \left( \cos B + \cos C - 1 \right) + b \left( \cos C + \cos A - 1 \right) + c\left( \cos A + \cos B - 1 \right) = 0\]
a cos A + b cos B + c cos C = 2b sin A sin C
In ∆ABC, prove the following:
\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]
In ∆ABC, prove the following:
\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]
In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\] Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\]
In \[∆ ABC, if \angle B = 60°,\] prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]
If in \[∆ ABC, \cos^2 A + \cos^2 B + \cos^2 C = 1\] prove that the triangle is right-angled.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if sinA and sinB are the roots of the equation \[c^2 x^2 - c\left( a + b \right)x + ab = 0\] then find \[\angle C\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In ∆ABC, if a = 8, b = 10, c = 12 and C = λA, find the value of λ.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles A, B, C.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any ∆ABC, find the value of
\[\sum^{}_{}a\left( \text{ sin }B - \text{ sin }C \right)\]
Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] =
Mark the correct alternative in each of the following:
In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\] then c is a root of the equation
Mark the correct alternative in each of the following:
In a ∆ABC, if \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is
Mark the correct alternative in each of the following:
In any ∆ABC, the value of \[2ac\sin\left( \frac{A - B + C}{2} \right)\] is
If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = –(xy + 1)]