English

In ∆Abc, Prove the Following: Sin 3 a Cos ( B − C ) + Sin 3 B Cos ( C − a ) + Sin 3 C Cos ( a − B ) = 3 Sin a Sin B Sin C - Mathematics

Advertisements
Advertisements

Question

In ∆ABC, prove the following: 

\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]

Solution

\[\text{ Let } \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k . . . \left( 1 \right)\]

\[\text{ LHS } = \sin^3 A\cos\left( B - C \right) + \sin^3 B\cos\left( C - A \right) + \sin^3 C\cos\left( A - B \right)\]

\[ = \sin^2 A\left\{ \sin A\cos\left( B - C \right) \right\} + \sin^2 B\left\{ \sin B\cos\left( C - A \right) \right\} + \sin^2 A\left\{ \sinA\cos\left( A - B \right) \right\}\]

\[ = \frac{a^2}{k^2}\left\{ \sin A\cos\left( B - C \right) \right\} + \frac{b^2}{k^2}\left\{ \sin B\cos\left( C - A \right) \right\} + \frac{c^2}{k^2}\left\{ \sin A\cos\left( A - B \right) \right\} \left[ \text{ from } \left( 1 \right) \right]\]

\[ = \frac{1}{2 k^2}\left[ a^2 \left\{ 2\sin A\cos\left( B - C \right) \right\} + b^2 \left\{ 2\sin B\cos\left( C - A \right) \right\} + c^2 \left\{ 2\sinA\cos\left( A - B \right) \right\} \right]\]

\[ = \frac{1}{2 k^2}\left[ a^2 \left\{ 2\sin\left( \pi - \left( B + C \right) \right)\cos\left( B - C \right) \right\} + b^2 \left\{ 2\sin\left( \pi - \left( A + C \right) \right)\cos\left( C - A \right) \right\} + c^2 \left\{ 2\sin\left( \pi - \left( B + C \right) \right)\cos\left( A - B \right) \right\} \right]\]

\[ = \frac{1}{2 k^2}\left[ a^2 \left\{ 2\sin\left( B + C \right)\cos\left( B - C \right) \right\} + b^2 \left\{ 2\sin\left( C + A \right)\cos\left( C - A \right) \right\} + c^2 \left\{ 2\sin\left( A + B \right)\cos\left( A - B \right) \right\} \right]\]

\[ = \frac{1}{2 k^2}\left[ a^2 \left\{ \sin2B + \sin2C \right\} + b^2 \left\{ \sin2C + \sin2A \right\} + c^2 \left\{ \sin2A + \sin2B \right\} \right]\]

\[ = \frac{1}{2 k^2}\left[ 2 a^2 \left\{ \sin B\cos B + \sin C\cos C \right\} + 2 b^2 \left\{ \sin C\cos C + \sin A\cos A \right\} + 2 c^2 \left\{ \sin A\cos A + \sin B\cos B \right\} \right]\]

\[ = \frac{1}{2 k^3}\left[ 2 a^2 \left\{ k\sin B\cos B + k\sin C\cos C \right\} + 2 b^2 \left\{ k\sin C\cos C + k\sin A\cos A \right\} + 2 c^2 \left\{ k\sin A\cos A + k\sin B\cos B \right\} \right]\]

\[ = \frac{1}{k^3}\left[ a^2 \left\{ b\cos B + c\cos C \right\} + 2 b^2 \left\{ c\cos C + a\cos A \right\} + 2 c^2 \left\{ a\cos A + a\cos B \right\} \right]\]

\[ = \frac{1}{k^3}\left[ ab\left( a\cos B + b\cos A \right) + bc\left( b\cos C + c\cos B \right) + ac\left( a\cos C + c\cos A \right) \right]\]

\[ = \frac{1}{k^3}\left( abc + bca + acb \right)\]

\[ = 3abc \times \frac{1}{k^3}\]

\[ = 3\sin A\sin B\sin C \times \frac{1}{k^3} \times k^3 \]

\[ = 3\sin A\sin B\sin C\]

\[ = \text{ RHS }\]

\[\text{ Hence proved } .\]

shaalaa.com
Sine and Cosine Formulae and Their Applications
  Is there an error in this question or solution?
Chapter 10: Sine and cosine formulae and their applications - Exercise 10.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 10 Sine and cosine formulae and their applications
Exercise 10.2 | Q 14 | Page 25

RELATED QUESTIONS

In triangle ABC, prove the following: 

\[\frac{a - b}{a + b} = \frac{\tan \left( \frac{A - B}{2} \right)}{\tan \left( \frac{A + B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\left( a - b \right) \cos \frac{C}{2} = c \sin \left( \frac{A - B}{2} \right)\]


In triangle ABC, prove the following: 

\[\frac{c}{a + b} = \frac{1 - \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}{1 + \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[b \sin B - c \sin C = a \sin \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}\]

 


In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]


In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]


In triangle ABC, prove the following: 

\[a \cos A + b\cos B + c \cos C = 2b \sin A \sin C = 2 c \sin A \sin B\]

 


\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]


In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 


In ∆ABC, if sin2 A + sin2 B = sin2 C. show that the triangle is right-angled. 


In ∆ABC, if a2b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P. 


A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\] 


If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]


In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C


In ∆ABC, prove the following: \[b \left( c \cos A - a \cos C \right) = c^2 - a^2\]


In ∆ABC, prove the following

\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\] 

 


Two ships leave a port at the same time. One goes 24 km/hr in the direction N 38° E and other travels 32 km/hr in the direction S 52° E. Find the distance between the ships at the end of 3 hrs. 


Answer  the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\]  find a

   

Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\]  then show that c = a


Answer  the following questions in one word or one sentence or as per exact requirement of the question.

In a ∆ABC, if sinA and sinB are the roots of the equation  \[c^2 x^2 - c\left( a + b \right)x + ab = 0\]  then find \[\angle C\]  

 


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\ 


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any ∆ABC, find the value of

\[\sum^{}_{}a\left( \text{ sin }B - \text{ sin }C \right)\]


Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] = 


Mark the correct alternative in each of the following: 

In a ∆ABC, if a = 2, \[\angle B = 60°\]  and\[\angle C = 75°\] 

 


Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is 


Mark the correct alternative in each of the following: 

In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) = 


Mark the correct alternative in each of the following: 

In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\]   then c is a root of the equation 


Find the value of `(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)`


If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×