English

If the Sides A, B and C of ∆Abc Are in H.P., Prove that Sin 2 a 2 , Sin 2 B 2 and Sin 2 C 2 - Mathematics

Advertisements
Advertisements

Question

If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]

Solution

\[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2} \text{ is a H . P }. \]
\[ \Leftrightarrow \frac{1}{\sin^2 \frac{A}{2}}, \frac{1}{\sin^2 \frac{B}{2}} \text{ and } \frac{1}{\sin^2 \frac{C}{2}} \text{ is an A . P } . \]
\[ \Leftrightarrow \frac{1}{\sin^2 \frac{B}{2}} - \frac{1}{\sin^2 \frac{A}{2}} = \frac{1}{\sin^2 \frac{C}{2}} - \frac{1}{\sin^2 \frac{B}{2}}\]
\[ \Leftrightarrow \frac{\sin^2 \frac{A}{2} - \sin^2 \frac{B}{2}}{\sin^2 \frac{A}{2} \sin^2 \frac{B}{2}} = \frac{\sin^2 \frac{B}{2} - \sin^2 \frac{C}{2}}{\sin^2 \frac{B}{2} \sin^2 \frac{C}{2}}\]
\[ \Leftrightarrow \frac{\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)}{\sin^2 \frac{A}{2}} = \frac{\sin\left( \frac{B + C}{2} \right)\sin\left( \frac{B - C}{2} \right)}{\sin^2 \frac{C}{2}}\]
\[ \Leftrightarrow \frac{\cos\left( \frac{C}{2} \right)\sin\left( \frac{A - B}{2} \right)}{\sin^2 \frac{A}{2}} = \frac{\cos\left( \frac{A}{2} \right)\sin\left( \frac{B - C}{2} \right)}{\sin^2 \frac{C}{2}} \left[ As, A + B + C = \pi \right]\]
\[ \Leftrightarrow \sin^2 \frac{C}{2}\cos\left( \frac{C}{2} \right)\sin\left( \frac{A - B}{2} \right) = \sin^2 \frac{A}{2}\cos\left( \frac{A}{2} \right)\sin\left( \frac{B - C}{2} \right)\]
\[ \Leftrightarrow 2\sin\frac{C}{2}\sin\frac{C}{2}\cos\left( \frac{C}{2} \right)\sin\left( \frac{A - B}{2} \right) = 2\sin\frac{A}{2}\sin\frac{A}{2}\cos\left( \frac{A}{2} \right)\sin\left( \frac{B - C}{2} \right)\]
\[ \Leftrightarrow \sin\frac{C}{2}\sin C \sin\left( \frac{A - B}{2} \right) = \sin\frac{A}{2}\sin A\sin\left( \frac{B - C}{2} \right) \left[ \because \sin2\theta = 2sin\thetacos\theta \right]\]
\[ \Leftrightarrow \sin C \cos\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right) = \sin A \cos\left( \frac{B + C}{2} \right) \sin\left( \frac{B - C}{2} \right) \left[ As, A + B + C = \pi \right]\]
\[ \Leftrightarrow \sin C\frac{\left( \sin A - \sin B \right)}{2} = \sin A\frac{\left( \sin B - \sin C \right)}{2} \left[ \sin C - \sin D = 2\cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right) \right]\]
\[ \Leftrightarrow \sin C\left( \sin A - \sin B \right) = \sin A\left( \sin B - \sin C \right)\]
\[ \Leftrightarrow ck\left( ak - bk \right) = ak\left( bk - ck \right) \left( \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = k \left( say \right) \right)\]
\[ \Leftrightarrow ca - cb = ab - ac\]
\[ \Leftrightarrow 2ac = ab + bc\]
\[ \Leftrightarrow \frac{2}{b} = \frac{1}{c} + \frac{1}{a} \left[ \text{ multiplying both the sides by abc } \right]\]
\[ \Leftrightarrow \text{ a, b, c are in H . P } . \]

shaalaa.com
Sine and Cosine Formulae and Their Applications
  Is there an error in this question or solution?
Chapter 10: Sine and cosine formulae and their applications - Exercise 10.1 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 31 | Page 14

RELATED QUESTIONS

If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides. 


If in ∆ABC, ∠C = 105°, ∠B = 45° and a = 2, then find b


In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C


In triangle ABC, prove the following: 

\[\frac{a - b}{a + b} = \frac{\tan \left( \frac{A - B}{2} \right)}{\tan \left( \frac{A + B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\left( a - b \right) \cos \frac{C}{2} = c \sin \left( \frac{A - B}{2} \right)\]


In triangle ABC, prove the following: 

\[\frac{c}{a + b} = \frac{1 - \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}{1 + \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{a + b}{c} = \frac{\cos \left( \frac{A - B}{2} \right)}{\sin \frac{C}{2}}\]

 


In triangle ABC, prove the following: 

\[b \sin B - c \sin C = a \sin \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[a^2 \sin \left( B - C \right) = \left( b^2 - c^2 \right) \sin A\]

 


In triangle ABC, prove the following: 

\[a \left( \sin B - \sin C \right) + \left( \sin C - \sin A \right) + c \left( \sin A - \sin B \right) = 0\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 \sin \left( B - C \right)}{\sin A} + \frac{b^2 \sin \left( C - A \right)}{\sin B} + \frac{c^2 \sin \left( A - B \right)}{\sin C} = 0\]

 


In triangle ABC, prove the following: 

\[a^2 \left( \cos^2 B - \cos^2 C \right) + b^2 \left( \cos^2 C - \cos^2 A \right) + c^2 \left( \cos^2 A - \cos^2 B \right) = 0\]

 


In triangle ABC, prove the following:

\[\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} - \frac{1}{a^2} - \frac{1}{b^2}\]

 


\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]


In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 


In ∆ABC, if sin2 A + sin2 B = sin2 C. show that the triangle is right-angled. 


At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain. 


In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\]  show that its area is \[\frac{15\sqrt{3}}{2} sq\].units. 


The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]


In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C


In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]


In ∆ABC, prove  the following: 

\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]

 


In ∆ABC, prove that  \[a \left( \cos B + \cos C - 1 \right) + b \left( \cos C + \cos A - 1 \right) + c\left( \cos A + \cos B - 1 \right) = 0\]


a cos + b cos B + c cos C = 2sin sin 


In ∆ABC, prove the following:

\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]


In \[∆ ABC, if \angle B = 60°,\]  prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]


Answer  the following questions in one word or one sentence or as per exact requirement of the question.

In a ∆ABC, if sinA and sinB are the roots of the equation  \[c^2 x^2 - c\left( a + b \right)x + ab = 0\]  then find \[\angle C\]  

 


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

In ∆ABC, if a = 8, b = 10, c = 12 and C = λA, find the value of λ


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

If the sides of a triangle are proportional to 2, \[\sqrt{6}\] and \[\sqrt{3} - 1\] find the measure of its greatest angle. 


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\ 


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any ∆ABC, find the value of

\[\sum^{}_{}a\left( \text{ sin }B - \text{ sin }C \right)\]


Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is 


Mark the correct alternative in each of the following: 

In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) = 


Mark the correct alternative in each of the following: 

In a ∆ABC, if  \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is 


If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×