English

In ∆Abc, Prove that a ( Cos C − Cos B ) = 2 ( B − C ) Cos 2 a 2 . - Mathematics

Advertisements
Advertisements

Question

In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 

Solution

\[\text{ Consider }\]
\[a\left( \cos C - \cos B \right)\]
\[ = k\left( \sin A\cos C - \sin A\cos B \right) \left[ \because \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \right]\]
\[ = \frac{k}{2}\left( 2\sin A\cos C - 2\sin A\cos B \right)\]
\[ = \frac{k}{2}\left[ \sin\left( A + C \right) + \sin\left( A - C \right) - \sin\left( A + B \right) - \sin\left( A - B \right) \right]\]
\[ = \frac{k}{2}\left[ \sin\left( \pi - B \right) + \sin\left( A - C \right) - \sin\left( \pi - C \right) - \sin\left( A - B \right) \right] \left( \because A + B + C = \pi \right)\]
\[ = \frac{k}{2}\left[ \sin B - \sin C + \sin\left( A - C \right) - \sin\left( A - B \right) \right]\]
\[ = \frac{k}{2}\left[ 2\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{B + C}{2} \right) + 2\sin\left( \frac{A - C - A + B}{2} \right)\cos\left( \frac{A - C + A - B}{2} \right) \right]\]
\[ = k\sin\left( \frac{B - C}{2} \right)\left[ \cos\left( \frac{\pi}{2} - \frac{A}{2} \right) + \cos\left\{ \frac{2A - \left( \pi - A \right)}{2} \right\} \right]\]
\[ = k\sin\left( \frac{B - C}{2} \right)\left( \sin\frac{A}{2} + \sin\frac{3A}{2} \right)\]
\[ = k\sin\left( \frac{B - C}{2} \right)\left[ 2\sin\left( \frac{\frac{A}{2} + \frac{3A}{2}}{2} \right)\cos\left( \frac{\frac{3A}{2} - \frac{A}{2}}{2} \right) \right]\]
\[ = 2k\sin\left( \frac{B - C}{2} \right)\sin A\cos\frac{A}{2}\]
\[ = 4k\sin\left( \frac{B - C}{2} \right)\sin\frac{A}{2} \cos^2 \frac{A}{2} . . . \left( 1 \right)\]
\[\text{ Now }, \]
\[\text{ Consider }\]
\[2\left( b - c \right) \cos^2 \frac{A}{2}\]
\[ = 2k\left( \sin B - \sin C \right) \cos^2 \frac{A}{2}\]
\[ = 2k\left[ 2\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{B + C}{2} \right) \right] \cos^2 \frac{A}{2}\]
\[ = 4k\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{\pi}{2} - \frac{A}{2} \right) \cos^2 \frac{A}{2}\]
\[ = 4k\sin\left( \frac{B - C}{2} \right)\sin\frac{A}{2} \cos^2 \frac{A}{2} . . . \left( 2 \right) \]
\[\text{ From } \left( 1 \right) \text{ & }\left( 2 \right), \text{ we get }\]
\[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2}\]
\[\text{ Hence proved } .\]

 

shaalaa.com
Sine and Cosine Formulae and Their Applications
  Is there an error in this question or solution?
Chapter 10: Sine and cosine formulae and their applications - Exercise 10.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 24 | Page 13

RELATED QUESTIONS

If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides. 


In triangle ABC, prove the following:

\[\frac{c}{a - b} = \frac{\tan\left( \frac{A}{2} \right) + \tan \left( \frac{B}{2} \right)}{\tan \left( \frac{A}{2} \right) - \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{a + b}{c} = \frac{\cos \left( \frac{A - B}{2} \right)}{\sin \frac{C}{2}}\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\] 


In triangle ABC, prove the following: 

\[b \sin B - c \sin C = a \sin \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[a^2 \sin \left( B - C \right) = \left( b^2 - c^2 \right) \sin A\]

 


In triangle ABC, prove the following: 

\[\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}\]

 


In triangle ABC, prove the following: 

\[a \left( \sin B - \sin C \right) + \left( \sin C - \sin A \right) + c \left( \sin A - \sin B \right) = 0\]

 


In triangle ABC, prove the following: 

\[b \cos B + c \cos C = a \cos \left( B - C \right)\]

 


In triangle ABC, prove the following:

\[\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} - \frac{1}{a^2} - \frac{1}{b^2}\]

 


In triangle ABC, prove the following: 

\[\frac{\cos^2 B - \cos^2 C}{b + c} + \frac{\cos^2 C - \cos^2 A}{c + a} + \frac{co s^2 A - \cos^2 B}{a + b} = 0\]

 


In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]


The upper part of a tree broken by the wind makes an angle of 30° with the ground and the distance from the root to the point where the top of the tree touches the ground is 15 m. Using sine rule, find the height of the tree. 


In \[∆ ABC, if a = \sqrt{2}, b = \sqrt{3} \text{ and } c = \sqrt{5}\] show that its area is \[\frac{1}{2}\sqrt{6} sq .\] units.


In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C


In ∆ABC, prove the following: \[b \left( c \cos A - a \cos C \right) = c^2 - a^2\]


In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]


In ∆ABC, prove  the following: 

\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]

 


In ∆ABC, prove the following:

\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\] 

 


In ∆ABC, prove the following: 

\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]


In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\]  Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\] 


In \[∆ ABC, if \angle B = 60°,\]  prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\]  then show that c = a


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

In ∆ABC, if a = 8, b = 10, c = 12 and C = λA, find the value of λ


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

If the sides of a triangle are proportional to 2, \[\sqrt{6}\] and \[\sqrt{3} - 1\] find the measure of its greatest angle. 


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\ 


Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] = 


Mark the correct alternative in each of the following: 

In a ∆ABC, if a = 2, \[\angle B = 60°\]  and\[\angle C = 75°\] 

 


Mark the correct alternative in each of the following:

In any ∆ABC, the value of  \[2ac\sin\left( \frac{A - B + C}{2} \right)\]  is 


Find the value of `(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×