Advertisements
Advertisements
Question
In triangle ABC, prove the following:
Solution
Let
\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k\]
Then,
Consider the LHS of the equation
\[LHS = \frac{\cos^2 B - \cos^2 C}{b + c} + \frac{\cos^2 C - \cos^2 A}{c + a} + \frac{\cos^2 A - \cos^2 B}{a + b}\]
\[Now, \]
\[\frac{\cos^2 B - \cos^2 C}{b + c} = \frac{\cos^2 B - \cos^2 C}{k\left( \sin B + \sin C \right)}\]
\[ = \frac{\left( \cos B + \cos C \right)\left( \cos B - cos C \right)}{k\left( \sin B + \sin C \right)} \left( \because \cos^2 B - \cos^2 C = \left( \cos B + \cos C \right)\left( \cos B - \cos C \right) \right)\]
\[ = \frac{\left[ 2\cos\left( \frac{B + C}{2} \right)\cos\left( \frac{B - C}{2} \right) \right]\left[ - 2\sin\left( \frac{B + C}{2} \right)\sin\left( \frac{B - C}{2} \right) \right]}{2k\sin\left( \frac{B + C}{2} \right)\sin\left( \frac{B - C}{2} \right)} \]
\[ = \frac{- 2\cos\left( \frac{B + C}{2} \right)\sin\left( \frac{B - C}{2} \right)}{k} = \frac{- \left( \sin B - \sin C \right)}{k} = \frac{\sin C - \sin B}{k}\]
Also,
\[\frac{\cos^2 C - \cos^2 A}{c + a} = \frac{\cos^2 C - \cos^2 A}{k\left( \sin C + \sin A \right)}\]
\[ = \frac{\left( \cos C + \cos A \right)\left( \cos C - \cos A \right)}{k\left( \sin C + \sin A \right)}\]
\[ = \frac{\left[ 2\cos\left( \frac{C + A}{2} \right)\cos\left( \frac{C - A}{2} \right) \right]\left[ - 2\sin\left( \frac{C + A}{2} \right)\sin\left( \frac{C - A}{2} \right) \right]}{2k\left( \sin C + \sin A \right)k}\]
\[ = \frac{- 2\cos\left( \frac{C + A}{2} \right)\cos\left( \frac{C - A}{2} \right)}{k}$=$\frac{- \left( \sin C - \sin A \right)}{k}=\frac{\sin A - \sin C}{k}\]
Similarly,
\[\frac{\cos^2 A - \cos^2 B}{a + b} = \frac{\sin B - \sin A}{k}\]
Thus,
\[LHS = \frac{\sin A - \sin C}{k} + \frac{\sin B - \sin A}{k} + \frac{\sin C - \sin B}{k}\]
\[ = 0 = RHS\]
Hence, in any triangle ABC,
APPEARS IN
RELATED QUESTIONS
In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C.
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]
\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]
In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\]
In ∆ABC, if a2, b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P.
If the sides a, b and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]
In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C.
In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]
In ∆ABC, prove the following:
\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]
In ∆ABC, prove the following:
\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\]
In ∆ABC, prove the following:
\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\]
If in \[∆ ABC, \cos^2 A + \cos^2 B + \cos^2 C = 1\] prove that the triangle is right-angled.
In \[∆ ABC \text{ if } \cos C = \frac{\sin A}{2 \sin B}\] prove that the triangle is isosceles.
Two ships leave a port at the same time. One goes 24 km/hr in the direction N 38° E and other travels 32 km/hr in the direction S 52° E. Find the distance between the ships at the end of 3 hrs.
Answer the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\] find a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\] then show that c = a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If the sides of a triangle are proportional to 2, \[\sqrt{6}\] and \[\sqrt{3} - 1\] find the measure of its greatest angle.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\
Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] =
Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is
Mark the correct alternative in each of the following:
In a ∆ABC, if \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is
Mark the correct alternative in each of the following:
In any ∆ABC, the value of \[2ac\sin\left( \frac{A - B + C}{2} \right)\] is
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.