English

In Triangle Abc, Prove the Following: Cos 2 B − Cos 2 C B + C + Cos 2 C − Cos 2 a C + a + C O S 2 a − Cos 2 B a + B = - Mathematics

Advertisements
Advertisements

Question

In triangle ABC, prove the following: 

\[\frac{\cos^2 B - \cos^2 C}{b + c} + \frac{\cos^2 C - \cos^2 A}{c + a} + \frac{co s^2 A - \cos^2 B}{a + b} = 0\]

 

Solution

Let 

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k\] 

Then,
Consider the LHS of the equation

\[\frac{\cos^2 B - \cos^2 C}{b + c} + \frac{\cos^2 C - \cos^2 A}{c + a} + \frac{co s^2 A - \cos^2 B}{a + b} = 0\]

\[LHS = \frac{\cos^2 B - \cos^2 C}{b + c} + \frac{\cos^2 C - \cos^2 A}{c + a} + \frac{\cos^2 A - \cos^2 B}{a + b}\]
\[Now, \]
\[\frac{\cos^2 B - \cos^2 C}{b + c} = \frac{\cos^2 B - \cos^2 C}{k\left( \sin B + \sin C \right)}\]
\[ = \frac{\left( \cos B + \cos C \right)\left( \cos B - cos C \right)}{k\left( \sin B + \sin C \right)} \left( \because \cos^2 B - \cos^2 C = \left( \cos B + \cos C \right)\left( \cos B - \cos C \right) \right)\]
\[ = \frac{\left[ 2\cos\left( \frac{B + C}{2} \right)\cos\left( \frac{B - C}{2} \right) \right]\left[ - 2\sin\left( \frac{B + C}{2} \right)\sin\left( \frac{B - C}{2} \right) \right]}{2k\sin\left( \frac{B + C}{2} \right)\sin\left( \frac{B - C}{2} \right)} \]
\[ = \frac{- 2\cos\left( \frac{B + C}{2} \right)\sin\left( \frac{B - C}{2} \right)}{k} = \frac{- \left( \sin B - \sin C \right)}{k} = \frac{\sin C - \sin B}{k}\]

Also, 

\[\frac{\cos^2 C - \cos^2 A}{c + a} = \frac{\cos^2 C - \cos^2 A}{k\left( \sin C + \sin A \right)}\]
\[ = \frac{\left( \cos C + \cos A \right)\left( \cos C - \cos A \right)}{k\left( \sin C + \sin A \right)}\]
\[ = \frac{\left[ 2\cos\left( \frac{C + A}{2} \right)\cos\left( \frac{C - A}{2} \right) \right]\left[ - 2\sin\left( \frac{C + A}{2} \right)\sin\left( \frac{C - A}{2} \right) \right]}{2k\left( \sin C + \sin A \right)k}\]
\[ = \frac{- 2\cos\left( \frac{C + A}{2} \right)\cos\left( \frac{C - A}{2} \right)}{k}$=$\frac{- \left( \sin C - \sin A \right)}{k}=\frac{\sin A - \sin C}{k}\]

Similarly, 

\[\frac{\cos^2 A - \cos^2 B}{a + b} = \frac{\sin B - \sin A}{k}\]

Thus, 

\[LHS = \frac{\sin A - \sin C}{k} + \frac{\sin B - \sin A}{k} + \frac{\sin C - \sin B}{k}\]
\[ = 0 = RHS\]

Hence, in any triangle ABC,

\[\frac{\cos^2 B - \cos^2 C}{b + c} + \frac{\cos^2 C - \cos^2 A}{c + a} + \frac{co s^2 A - \cos^2 B}{a + b} = 0\]

 

shaalaa.com
Sine and Cosine Formulae and Their Applications
  Is there an error in this question or solution?
Chapter 10: Sine and cosine formulae and their applications - Exercise 10.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 19 | Page 13

RELATED QUESTIONS

In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C


In triangle ABC, prove the following:

\[\frac{c}{a - b} = \frac{\tan\left( \frac{A}{2} \right) + \tan \left( \frac{B}{2} \right)}{\tan \left( \frac{A}{2} \right) - \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{a + b}{c} = \frac{\cos \left( \frac{A - B}{2} \right)}{\sin \frac{C}{2}}\]

 


In triangle ABC, prove the following: 

\[b \sin B - c \sin C = a \sin \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}\]

 


In triangle ABC, prove the following: 

\[a^2 \left( \cos^2 B - \cos^2 C \right) + b^2 \left( \cos^2 C - \cos^2 A \right) + c^2 \left( \cos^2 A - \cos^2 B \right) = 0\]

 


In triangle ABC, prove the following: 

\[b \cos B + c \cos C = a \cos \left( B - C \right)\]

 


In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]


\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]


In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 


In ∆ABC, if a2b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P. 


If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]


In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C


In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]


In ∆ABC, prove  the following: 

\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]

 


In ∆ABC, prove the following

\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\] 

 


In ∆ABC, prove the following:

\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\] 

 


If in \[∆ ABC, \cos^2 A + \cos^2 B + \cos^2 C = 1\] prove that the triangle is right-angled. 

 


In \[∆ ABC \text{ if } \cos C = \frac{\sin A}{2 \sin B}\] prove that the triangle is isosceles.  


Two ships leave a port at the same time. One goes 24 km/hr in the direction N 38° E and other travels 32 km/hr in the direction S 52° E. Find the distance between the ships at the end of 3 hrs. 


Answer  the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\]  find a

   

Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\]  then show that c = a


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

If the sides of a triangle are proportional to 2, \[\sqrt{6}\] and \[\sqrt{3} - 1\] find the measure of its greatest angle. 


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\ 


Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] = 


Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is 


Mark the correct alternative in each of the following: 

In a ∆ABC, if  \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is 


Mark the correct alternative in each of the following:

In any ∆ABC, the value of  \[2ac\sin\left( \frac{A - B + C}{2} \right)\]  is 


If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×