English

Mark the Correct Alternative in Each of the Following: If the Sides of a Triangle Are in the Ratio 1 : √ 3 : 2 Then the Measure of Its Greatest Angle is - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is 

Options

  • \[\frac{\pi}{6}\] 

  • \[\frac{\pi}{3}\] 

  • \[\frac{\pi}{2}\] 

  • \[\frac{2\pi}{3}\]

MCQ

Solution

Let ∆ABC be the given triangle such that its sides are in the ratio \[1: \sqrt{3}: 2\] 

\[\therefore a = k, b = \sqrt{3}k, c = 2k\]

Now,

\[a^2 + b^2 = k^2 + 3 k^2 = 4 k^2 = c^2\] 

So, ∆ABC is a right triangle right angled at C. 

\[\therefore C = 90°\]  

Using sine rule, we have 

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\]
\[ \Rightarrow \frac{k}{\sin A} = \frac{\sqrt{3}k}{\sin B} = \frac{2k}{\sin90°\] 
\[ \Rightarrow \sin A = \frac{1}{2} \text{ and } \sin B = \frac{\sqrt{3}}{2}\]
\[ \Rightarrow A = 30° a\text{ and } B = 60°\] 

Thus, the measure of its greatest angle is \[\frac{\pi}{2}\]  

Hence, the correct answer is option (c).

shaalaa.com
Sine and Cosine Formulae and Their Applications
  Is there an error in this question or solution?
Chapter 10: Sine and cosine formulae and their applications - Exercise 10.4 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 10 Sine and cosine formulae and their applications
Exercise 10.4 | Q 3 | Page 26

RELATED QUESTIONS

If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides. 


In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C


In triangle ABC, prove the following: 

\[\frac{a - b}{a + b} = \frac{\tan \left( \frac{A - B}{2} \right)}{\tan \left( \frac{A + B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{c}{a + b} = \frac{1 - \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}{1 + \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{a + b}{c} = \frac{\cos \left( \frac{A - B}{2} \right)}{\sin \frac{C}{2}}\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\] 


In triangle ABC, prove the following: 

\[a^2 \sin \left( B - C \right) = \left( b^2 - c^2 \right) \sin A\]

 


In triangle ABC, prove the following: 

\[\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 \sin \left( B - C \right)}{\sin A} + \frac{b^2 \sin \left( C - A \right)}{\sin B} + \frac{c^2 \sin \left( A - B \right)}{\sin C} = 0\]

 


In triangle ABC, prove the following: 

\[a \cos A + b\cos B + c \cos C = 2b \sin A \sin C = 2 c \sin A \sin B\]

 


In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 


In ∆ABC, if sin2 A + sin2 B = sin2 C. show that the triangle is right-angled. 


The upper part of a tree broken by the wind makes an angle of 30° with the ground and the distance from the root to the point where the top of the tree touches the ground is 15 m. Using sine rule, find the height of the tree. 


At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain. 


A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\] 


If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]


In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\]  show that its area is \[\frac{15\sqrt{3}}{2} sq\].units. 


The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]


In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C


In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]


In ∆ABC, prove  the following: 

\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]

 


In ∆ABC, prove the following

\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\] 

 


In ∆ABC, prove the following:

\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\] 

 


In ∆ABC, prove the following: 

\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]


In ∆ABC, prove the following:

\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\] 



Answer  the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\]  find a

   

Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\] 

 


Answer  the following questions in one word or one sentence or as per exact requirement of the question.

In a ∆ABC, if sinA and sinB are the roots of the equation  \[c^2 x^2 - c\left( a + b \right)x + ab = 0\]  then find \[\angle C\]  

 


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

In ∆ABC, if a = 8, b = 10, c = 12 and C = λA, find the value of λ


Mark the correct alternative in each of the following: 

In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\]   then c is a root of the equation 


Mark the correct alternative in each of the following:

In any ∆ABC, the value of  \[2ac\sin\left( \frac{A - B + C}{2} \right)\]  is 


If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.


If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = –(xy + 1)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×