English

In Triangle Abc, Prove the Following: a 2 Sin ( B − C ) Sin a + B 2 Sin ( C − a ) Sin B + C 2 Sin ( a − B ) Sin C = 0 - Mathematics

Advertisements
Advertisements

Question

In triangle ABC, prove the following: 

\[\frac{a^2 \sin \left( B - C \right)}{\sin A} + \frac{b^2 \sin \left( C - A \right)}{\sin B} + \frac{c^2 \sin \left( A - B \right)}{\sin C} = 0\]

 

Solution

Let 

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k\] 

Then,
Consider the LHS of the equation

\[\frac{a^2 \sin \left( B - C \right)}{\sin A} + \frac{b^2 \sin \left( C - A \right)}{\sin B} + \frac{c^2 \sin \left( A - B \right)}{\sin C} = 0\]

\[LHS = \frac{a^2 \sin\left( B - C \right)}{\sin A} + \frac{b^2 \sin\left( C - A \right)}{\sin B} + \frac{c^2 \sin\left( A - B \right)}{\sin C}\]
\[ = \frac{k^2 \sin^2 A\sin\left( B - C \right)}{\sin A} + \frac{k^2 \sin^2 B\sin\left( C - A \right)}{\sin B} + \frac{k^2 \sin^2 C\sin\left( A - B \right)}{\sin C} \]
\[ = k^2 \sin A\sin\left( B - C \right) + k^2 \sin B\sin\left( C - A \right) + k^2 \sin C\sin\left( A - B \right) \]
\[ = k^2 \left[ \sin A\left( \sin B\cos C - \sin C\cos B \right) + \sin B\left( \sin C\cos A - \sin A\cos C \right) + \sin C\left( \sin A\cos B - \sin B\cos A \right) \right] \]
\[ = k^2 \left( \sin A\sin B\cos C - \sin A\sin C\cos B + \sin B\sin C\cos A - \sin A\sin B\cos C + \sin A\sin C\cos B - \sin C\sin B\cos A \right)\]
\[ = 0 = RHS\]
\[\text{ Hence proved } .\]

shaalaa.com
Sine and Cosine Formulae and Their Applications
  Is there an error in this question or solution?
Chapter 10: Sine and cosine formulae and their applications - Exercise 10.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 15 | Page 13

RELATED QUESTIONS

In triangle ABC, prove the following: 

\[\left( a - b \right) \cos \frac{C}{2} = c \sin \left( \frac{A - B}{2} \right)\]


In triangle ABC, prove the following: 

\[\frac{c}{a + b} = \frac{1 - \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}{1 + \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{a + b}{c} = \frac{\cos \left( \frac{A - B}{2} \right)}{\sin \frac{C}{2}}\]

 


In any triangle ABC, prove the following: 

\[\sin \left( \frac{B - C}{2} \right) = \frac{b - c}{a} \cos\frac{A}{2}\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\] 


In triangle ABC, prove the following: 

\[b \sin B - c \sin C = a \sin \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[a^2 \sin \left( B - C \right) = \left( b^2 - c^2 \right) \sin A\]

 


In triangle ABC, prove the following: 

\[a \left( \sin B - \sin C \right) + \left( \sin C - \sin A \right) + c \left( \sin A - \sin B \right) = 0\]

 


In triangle ABC, prove the following: 

\[a^2 \left( \cos^2 B - \cos^2 C \right) + b^2 \left( \cos^2 C - \cos^2 A \right) + c^2 \left( \cos^2 A - \cos^2 B \right) = 0\]

 


In triangle ABC, prove the following: 

\[b \cos B + c \cos C = a \cos \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[\frac{\cos^2 B - \cos^2 C}{b + c} + \frac{\cos^2 C - \cos^2 A}{c + a} + \frac{co s^2 A - \cos^2 B}{a + b} = 0\]

 


In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]


In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 


If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]


The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]


In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C


In ∆ABC, prove the following: \[b \left( c \cos A - a \cos C \right) = c^2 - a^2\]


a cos + b cos B + c cos C = 2sin sin 


In ∆ABC, prove the following: 

\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]


In ∆ABC, prove the following: 

\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]


In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\]  Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\] 


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\] 



Answer  the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\]  find a

   

Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\]  then show that c = a


Answer  the following questions in one word or one sentence or as per exact requirement of the question.

In a ∆ABC, if sinA and sinB are the roots of the equation  \[c^2 x^2 - c\left( a + b \right)x + ab = 0\]  then find \[\angle C\]  

 


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

In ∆ABC, if a = 8, b = 10, c = 12 and C = λA, find the value of λ


Mark the correct alternative in each of the following: 

In a ∆ABC, if a = 2, \[\angle B = 60°\]  and\[\angle C = 75°\] 

 


Mark the correct alternative in each of the following: 

In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) = 


Mark the correct alternative in each of the following: 

In a ∆ABC, if  \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is 


If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.


If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = –(xy + 1)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×