Advertisements
Advertisements
Question
Mark the correct alternative in each of the following:
In a ∆ABC, if \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is
Options
\[\frac{\pi}{3}\]
\[\frac{\pi}{6}\]
\[\frac{2\pi}{3}\]
\[\frac{\pi}{2}\]
Solution
Given:
\[\left( c + a + b \right)\left( a + b - c \right) = ab\]
\[\Rightarrow \left( a + b \right)^2 - c^2 = ab\]
\[ \Rightarrow a^2 + b^2 + 2ab - c^2 = ab\]
\[ \Rightarrow a^2 + b^2 - c^2 = - ab\]
\[ \Rightarrow \frac{a^2 + b^2 - c^2}{2ab} = - \frac{1}{2}\]
\[\Rightarrow \cos C = - \frac{1}{2} = \cos\frac{2\pi}{3} \left( \text{ Using cosine rule } \right)\]
\[ \Rightarrow C = \frac{2\pi}{3}\]
Thus, the measure of angle C is \[\frac{2\pi}{3}\]
Hence, the correct answer is option (c).
APPEARS IN
RELATED QUESTIONS
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In any triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]
In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\]
A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\]
In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\] show that its area is \[\frac{15\sqrt{3}}{2} sq\].units.
In \[∆ ABC, if a = \sqrt{2}, b = \sqrt{3} \text{ and } c = \sqrt{5}\] show that its area is \[\frac{1}{2}\sqrt{6} sq .\] units.
In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C.
In ∆ABC, prove the following: \[b \left( c \cos A - a \cos C \right) = c^2 - a^2\]
In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]
In ∆ABC, prove the following:
\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]
In ∆ABC, prove the following:
\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\]
In ∆ABC, prove that \[a \left( \cos B + \cos C - 1 \right) + b \left( \cos C + \cos A - 1 \right) + c\left( \cos A + \cos B - 1 \right) = 0\]
In ∆ABC, prove the following:
\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]
In ∆ABC, prove the following:
\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]
In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\] Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\]
Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] =
Mark the correct alternative in each of the following:
In a ∆ABC, if a = 2, \[\angle B = 60°\] and\[\angle C = 75°\]
Mark the correct alternative in each of the following:
In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\] then c is a root of the equation
Mark the correct alternative in each of the following:
In any ∆ABC, the value of \[2ac\sin\left( \frac{A - B + C}{2} \right)\] is
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.