English

P a ( Cos B Cos C + Cos a ) = B ( Cos C Cos a + Cos B ) = C ( Cos a Cos B + Cos C ) - Mathematics

Advertisements
Advertisements

Question

\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]

Solution

Suppose \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k\]

Consider: 

\[a\left( \cos B\cos C + \cos A \right)\]
\[ = k\sin A\left( \cos B\cos C + \cos A \right) \]
\[ = k\left( \sin A\cos B\cos C + \cos A\sin A \right)\]
\[ = k\left[ \frac{1}{2}\cos C\left\{ \sin\left( A + B \right) + \sin\left( A - B \right) \right\} + \sin A\cos A \right]\]
\[ = k\left[ \frac{1}{2}\left\{ \sin\left( A + B \right)\cos C + \sin\left( A - B \right)\cos C \right\} + \sin A\cos A \right]\]
\[ = k\left[ \frac{1}{2}\left\{ \frac{1}{2}\left[ \sin\left( A + B + C \right) + \sin\left( A + B - C \right) + \sin\left( A - B + C \right) + \sin\left( A - B - C \right) \right] \right\} + \sin A\cos A \right]\]
\[ = k\left[ \frac{1}{4}\left\{ sin\pi + \sin\left( \pi - 2C \right) + \sin\left( \pi - 2B \right) - \sin\left( \pi - 2A \right) \right\} + \frac{\sin2A}{2} \right] \left( \because A + B + C = \pi \right)\]
\[ = \frac{k}{4}\left( \sin2C + \sin2B + \sin2A \right) . . . . \left( 1 \right)\]
\[\text{ and } \]
\[b\left( \cos A\cos C + \cos B \right)\]
\[ = k\left( \sin B\cos A\cos C + sinBcosB \right)\]
\[ = k\left[ \frac{1}{2}\cos A\left\{ \sin\left( B + C \right) + \sin\left( B - C \right) \right\} + \frac{\sin2B}{2} \right]\]
\[ = k\left( \frac{1}{2}\left( \sin\left( B + C \right)\cos A + \sin\left( B - C \right)\cos A \right) + \frac{\sin2B}{2} \right)\]
\[ = k\left( \frac{1}{4}\left( \sin\left( B + C + A \right) + \sin\left( B + C - A \right) + \sin\left( B - C + A \right) + \sin\left( B - C - A \right) \right) + \frac{\sin2B}{2} \right)\]
\[ = \frac{k}{4}\left( sin\pi + \sin\left( \pi - 2A \right) + \sin\left( \pi - 2C \right) - \sin\left( \pi - 2B \right) + \frac{\sin2B}{2} \right) \left( \because A + B + C = \pi \right)\]
\[ = \frac{k}{4}\left( \sin2A + \sin2C + \sin2B \right) . . . \left( 2 \right)\]
\[\text{ Similarly }, \]
\[c\left( \cos A\cos B + \cos C \right) = \frac{k}{4}\left( \sin2A + \sin2B + \sin2C \right) . . . \left( 3 \right)\]

From (1), (2) and (3), we get: 

\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\] 

Hence proved. 

shaalaa.com
Sine and Cosine Formulae and Their Applications
  Is there an error in this question or solution?
Chapter 10: Sine and cosine formulae and their applications - Exercise 10.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 23 | Page 13

RELATED QUESTIONS

If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides. 


If in ∆ABC, ∠C = 105°, ∠B = 45° and a = 2, then find b


In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C


In triangle ABC, prove the following: 

\[\frac{a - b}{a + b} = \frac{\tan \left( \frac{A - B}{2} \right)}{\tan \left( \frac{A + B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[b \sin B - c \sin C = a \sin \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[a^2 \sin \left( B - C \right) = \left( b^2 - c^2 \right) \sin A\]

 


In triangle ABC, prove the following: 

\[a^2 \left( \cos^2 B - \cos^2 C \right) + b^2 \left( \cos^2 C - \cos^2 A \right) + c^2 \left( \cos^2 A - \cos^2 B \right) = 0\]

 


In triangle ABC, prove the following: 

\[b \cos B + c \cos C = a \cos \left( B - C \right)\]

 


In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]


In ∆ABC, prove that if θ be any angle, then b cosθ = c cos (A − θ) + a cos (C + θ). 


In ∆ABC, if sin2 A + sin2 B = sin2 C. show that the triangle is right-angled. 


In ∆ABC, if a2b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P. 


The upper part of a tree broken by the wind makes an angle of 30° with the ground and the distance from the root to the point where the top of the tree touches the ground is 15 m. Using sine rule, find the height of the tree. 


If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]


The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]


In ∆ABC, prove the following

\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\] 

 


In ∆ABC, prove that  \[a \left( \cos B + \cos C - 1 \right) + b \left( \cos C + \cos A - 1 \right) + c\left( \cos A + \cos B - 1 \right) = 0\]


In ∆ABC, prove the following: 

\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]


In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\]  Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\] 


In \[∆ ABC, if \angle B = 60°,\]  prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]


If in \[∆ ABC, \cos^2 A + \cos^2 B + \cos^2 C = 1\] prove that the triangle is right-angled. 

 


Two ships leave a port at the same time. One goes 24 km/hr in the direction N 38° E and other travels 32 km/hr in the direction S 52° E. Find the distance between the ships at the end of 3 hrs. 


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\] 



Answer  the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\]  find a

   

Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\] 

 


Answer  the following questions in one word or one sentence or as per exact requirement of the question.

In a ∆ABC, if sinA and sinB are the roots of the equation  \[c^2 x^2 - c\left( a + b \right)x + ab = 0\]  then find \[\angle C\]  

 


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

In ∆ABC, if a = 8, b = 10, c = 12 and C = λA, find the value of λ


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\ 


Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is 


Mark the correct alternative in each of the following: 

In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) = 


Mark the correct alternative in each of the following:

In any ∆ABC, the value of  \[2ac\sin\left( \frac{A - B + C}{2} \right)\]  is 


If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×