मराठी

P a ( Cos B Cos C + Cos a ) = B ( Cos C Cos a + Cos B ) = C ( Cos a Cos B + Cos C ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]

उत्तर

Suppose \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k\]

Consider: 

\[a\left( \cos B\cos C + \cos A \right)\]
\[ = k\sin A\left( \cos B\cos C + \cos A \right) \]
\[ = k\left( \sin A\cos B\cos C + \cos A\sin A \right)\]
\[ = k\left[ \frac{1}{2}\cos C\left\{ \sin\left( A + B \right) + \sin\left( A - B \right) \right\} + \sin A\cos A \right]\]
\[ = k\left[ \frac{1}{2}\left\{ \sin\left( A + B \right)\cos C + \sin\left( A - B \right)\cos C \right\} + \sin A\cos A \right]\]
\[ = k\left[ \frac{1}{2}\left\{ \frac{1}{2}\left[ \sin\left( A + B + C \right) + \sin\left( A + B - C \right) + \sin\left( A - B + C \right) + \sin\left( A - B - C \right) \right] \right\} + \sin A\cos A \right]\]
\[ = k\left[ \frac{1}{4}\left\{ sin\pi + \sin\left( \pi - 2C \right) + \sin\left( \pi - 2B \right) - \sin\left( \pi - 2A \right) \right\} + \frac{\sin2A}{2} \right] \left( \because A + B + C = \pi \right)\]
\[ = \frac{k}{4}\left( \sin2C + \sin2B + \sin2A \right) . . . . \left( 1 \right)\]
\[\text{ and } \]
\[b\left( \cos A\cos C + \cos B \right)\]
\[ = k\left( \sin B\cos A\cos C + sinBcosB \right)\]
\[ = k\left[ \frac{1}{2}\cos A\left\{ \sin\left( B + C \right) + \sin\left( B - C \right) \right\} + \frac{\sin2B}{2} \right]\]
\[ = k\left( \frac{1}{2}\left( \sin\left( B + C \right)\cos A + \sin\left( B - C \right)\cos A \right) + \frac{\sin2B}{2} \right)\]
\[ = k\left( \frac{1}{4}\left( \sin\left( B + C + A \right) + \sin\left( B + C - A \right) + \sin\left( B - C + A \right) + \sin\left( B - C - A \right) \right) + \frac{\sin2B}{2} \right)\]
\[ = \frac{k}{4}\left( sin\pi + \sin\left( \pi - 2A \right) + \sin\left( \pi - 2C \right) - \sin\left( \pi - 2B \right) + \frac{\sin2B}{2} \right) \left( \because A + B + C = \pi \right)\]
\[ = \frac{k}{4}\left( \sin2A + \sin2C + \sin2B \right) . . . \left( 2 \right)\]
\[\text{ Similarly }, \]
\[c\left( \cos A\cos B + \cos C \right) = \frac{k}{4}\left( \sin2A + \sin2B + \sin2C \right) . . . \left( 3 \right)\]

From (1), (2) and (3), we get: 

\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\] 

Hence proved. 

shaalaa.com
Sine and Cosine Formulae and Their Applications
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Sine and cosine formulae and their applications - Exercise 10.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 23 | पृष्ठ १३

संबंधित प्रश्‍न

If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides. 


In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C


In triangle ABC, prove the following: 

\[\frac{c}{a + b} = \frac{1 - \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}{1 + \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{a + b}{c} = \frac{\cos \left( \frac{A - B}{2} \right)}{\sin \frac{C}{2}}\]

 


In triangle ABC, prove the following: 

\[a \left( \sin B - \sin C \right) + \left( \sin C - \sin A \right) + c \left( \sin A - \sin B \right) = 0\]

 


In triangle ABC, prove the following: 

\[b \cos B + c \cos C = a \cos \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[\frac{\cos^2 B - \cos^2 C}{b + c} + \frac{\cos^2 C - \cos^2 A}{c + a} + \frac{co s^2 A - \cos^2 B}{a + b} = 0\]

 


In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]


In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]


In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 


In ∆ABC, prove that if θ be any angle, then b cosθ = c cos (A − θ) + a cos (C + θ). 


In ∆ABC, if sin2 A + sin2 B = sin2 C. show that the triangle is right-angled. 


In ∆ABC, if a2b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P. 


At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain. 


In \[∆ ABC, if a = \sqrt{2}, b = \sqrt{3} \text{ and } c = \sqrt{5}\] show that its area is \[\frac{1}{2}\sqrt{6} sq .\] units.


In ∆ABC, prove the following: \[b \left( c \cos A - a \cos C \right) = c^2 - a^2\]


In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]


In ∆ABC, prove the following:

\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\] 

 


In ∆ABC, prove that  \[a \left( \cos B + \cos C - 1 \right) + b \left( \cos C + \cos A - 1 \right) + c\left( \cos A + \cos B - 1 \right) = 0\]


In ∆ABC, prove the following:

\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\] 



Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\] 

 


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

If the sides of a triangle are proportional to 2, \[\sqrt{6}\] and \[\sqrt{3} - 1\] find the measure of its greatest angle. 


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles ABC


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any ∆ABC, find the value of

\[\sum^{}_{}a\left( \text{ sin }B - \text{ sin }C \right)\]


Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] = 


Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is 


Mark the correct alternative in each of the following: 

In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\]   then c is a root of the equation 


Mark the correct alternative in each of the following:

In any ∆ABC, the value of  \[2ac\sin\left( \frac{A - B + C}{2} \right)\]  is 


Mark the correct alternative in each of the following:

In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]  


If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = –(xy + 1)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×