मराठी

If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0 [Hint: Find xy + 1 and then show that x – y = –(xy + 1)] - Mathematics

Advertisements
Advertisements

प्रश्न

If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = –(xy + 1)]

बेरीज
सिद्धांत

उत्तर

Given that: x = sec Φ – tan Φ

And y = cosec Φ + cot Φ

xy + x – y + 1 = 0

L.H.S. xy + x – y + 1

= (sec Φ – tan Φ) (cosec Φ + cot Φ) + (sec Φ – tan Φ) – (cosec Φ + cot Φ) + 1

= `(1/cosphi - sinphi/cosphi) (1/sinphi + cosphi/sinphi) + (1/cosphi - sinphi/cosphi) - (1/sinphi - sinphi/cosphi) + 1`

= `((1 - sin phi)/cos phi) ((1 + cos phi)/sinphi) + (1 - sin phi)/cosphi - (1 + cosphi)/sinphi + 1`

= `(1 - sinphi + cosphi - sinphi cosphi)/(cosphisinphi) + (sinphi - sin^2 phi - cos phi - cos^2 phi)/(cos phi sin phi) + 1`

= `(1 - sin phi + cosphi - sinphi cosphi + sinphi - cosphi - (sin^2 phi + cos^2 phi) + sin phi cos phi)/(cosphi sin phi)`

= `(1 - 1)/(cos phi sin phi)`

= 0. R.H.S.

L.H.S. = R.H.S.

Hence proved.

shaalaa.com
Sine and Cosine Formulae and Their Applications
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 24 | पृष्ठ ५४

संबंधित प्रश्‍न

In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C


In triangle ABC, prove the following: 

\[\frac{a - b}{a + b} = \frac{\tan \left( \frac{A - B}{2} \right)}{\tan \left( \frac{A + B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\left( a - b \right) \cos \frac{C}{2} = c \sin \left( \frac{A - B}{2} \right)\]


In triangle ABC, prove the following:

\[\frac{c}{a - b} = \frac{\tan\left( \frac{A}{2} \right) + \tan \left( \frac{B}{2} \right)}{\tan \left( \frac{A}{2} \right) - \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{c}{a + b} = \frac{1 - \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}{1 + \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}\]

 


In any triangle ABC, prove the following: 

\[\sin \left( \frac{B - C}{2} \right) = \frac{b - c}{a} \cos\frac{A}{2}\]

 


In triangle ABC, prove the following: 

\[b \sin B - c \sin C = a \sin \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[b \cos B + c \cos C = a \cos \left( B - C \right)\]

 


In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]


In triangle ABC, prove the following: 

\[a \cos A + b\cos B + c \cos C = 2b \sin A \sin C = 2 c \sin A \sin B\]

 


At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain. 


A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\] 


In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\]  show that its area is \[\frac{15\sqrt{3}}{2} sq\].units. 


In \[∆ ABC, if a = \sqrt{2}, b = \sqrt{3} \text{ and } c = \sqrt{5}\] show that its area is \[\frac{1}{2}\sqrt{6} sq .\] units.


In ∆ABC, prove that  \[a \left( \cos B + \cos C - 1 \right) + b \left( \cos C + \cos A - 1 \right) + c\left( \cos A + \cos B - 1 \right) = 0\]


a cos + b cos B + c cos C = 2sin sin 


In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\]  Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\] 


In \[∆ ABC \text{ if } \cos C = \frac{\sin A}{2 \sin B}\] prove that the triangle is isosceles.  


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\] 

 


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

If the sides of a triangle are proportional to 2, \[\sqrt{6}\] and \[\sqrt{3} - 1\] find the measure of its greatest angle. 


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\ 


Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] = 


Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is 


Mark the correct alternative in each of the following: 

In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\]   then c is a root of the equation 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×