मराठी

A Cos a + B Cos B + C Cos C = 2b Sin a Sin C - Mathematics

Advertisements
Advertisements

प्रश्न

a cos + b cos B + c cos C = 2sin sin 

उत्तर

\[\text{ By sine rule, we know that }\]

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \left( say \right)\]

\[ \Rightarrow a = k \sin A, b = k \sin B, c = k \sin C\]

\[\text{ Now }, \]

\[LHS = a \cos A + b \cos B + c \cos C\]

\[ = k \sin A \cos A + k \sin B \cos B + k \sin C \cos C\]

\[ = \frac{k}{2} \left( 2 \sin A \cos A + 2 \sin B \cos B + 2 \sin C \cos C \right)\]

\[ = \frac{k}{2} \left( \sin 2A + \sin 2B + 2 \sin C \cos C \right)\]

\[ = \frac{k}{2} \left( 2 \sin \frac{2A + 2B}{2}\cos\frac{2A - 2B}{2} + 2 \sin C \cos C \right)\]

\[ = \frac{k}{2} \left( 2 \sin \left( A + B \right) \cos \left( A - B \right) + 2 \sin C \cos C \right)\]

\[ = \frac{k}{2} \left( 2 \sin \left( \pi - C \right) \cos \left( A - B \right) + 2 \sin C \cos C \right) \left( \because A + B + C = \pi \right)\]

\[ = \frac{k}{2} \left( 2 \sin C \cos \left( A - B \right) + 2 \sin C \cos C \right)\]

\[ = \frac{k}{2} \times 2 \sin C\left( \cos \left( A - B \right) + \cos C \right)\]

\[ = k \sin C\left( 2 \cos \left( \frac{A - B + C}{2} \right)\cos \left( \frac{A - B - C}{2} \right) \right)\]

\[ = k \sin C\left( 2 \cos \left( \frac{\pi - B - B}{2} \right)\cos \left( \frac{B + C - A}{2} \right) \right) \left( \because A + B + C = \pi \right)\]

\[ = k \sin C\left( 2 \cos \left( \frac{\pi - 2B}{2} \right)\cos \left( \frac{\pi - 2A}{2} \right) \right) \left( \because A + B + C = \pi \right)\]

\[ = k \sin C\left( 2 \cos \left( \frac{\pi}{2} - B \right)\cos \left( \frac{\pi}{2} - A \right) \right)\]

\[ = 2k \sin C\left( \sin B \sin A \right)\]

\[ = 2 \left( k \sin B \right) \sin A \sin C\]

\[ = 2b \sin A \sin C\]

\[ = RHS\]

\[ \therefore LHS = RHS\]

Hence, a cos + b cos B + c cos C = 2sin sin C.

shaalaa.com
Sine and Cosine Formulae and Their Applications
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Sine and cosine formulae and their applications - Exercise 10.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 10 Sine and cosine formulae and their applications
Exercise 10.2 | Q 11 | पृष्ठ २५

संबंधित प्रश्‍न

If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides. 


In triangle ABC, prove the following: 

\[\left( a - b \right) \cos \frac{C}{2} = c \sin \left( \frac{A - B}{2} \right)\]


In triangle ABC, prove the following:

\[\frac{c}{a - b} = \frac{\tan\left( \frac{A}{2} \right) + \tan \left( \frac{B}{2} \right)}{\tan \left( \frac{A}{2} \right) - \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{c}{a + b} = \frac{1 - \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}{1 + \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}\]

 


In any triangle ABC, prove the following: 

\[\sin \left( \frac{B - C}{2} \right) = \frac{b - c}{a} \cos\frac{A}{2}\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\] 


In triangle ABC, prove the following: 

\[b \sin B - c \sin C = a \sin \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}\]

 


In triangle ABC, prove the following: 

\[a \left( \sin B - \sin C \right) + \left( \sin C - \sin A \right) + c \left( \sin A - \sin B \right) = 0\]

 


In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]


In ∆ABC, prove that if θ be any angle, then b cosθ = c cos (A − θ) + a cos (C + θ). 


In ∆ABC, if a2b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P. 


At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain. 


A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\] 


If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]


In \[∆ ABC, if a = \sqrt{2}, b = \sqrt{3} \text{ and } c = \sqrt{5}\] show that its area is \[\frac{1}{2}\sqrt{6} sq .\] units.


In ∆ABC, prove  the following: 

\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]

 


In ∆ABC, prove the following

\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\] 

 


In ∆ABC, prove the following:

\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\] 

 


In ∆ABC, prove the following: 

\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]


In ∆ABC, prove the following:

\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]


In \[∆ ABC, if \angle B = 60°,\]  prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\] 



Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\] 

 


Answer  the following questions in one word or one sentence or as per exact requirement of the question.

In a ∆ABC, if sinA and sinB are the roots of the equation  \[c^2 x^2 - c\left( a + b \right)x + ab = 0\]  then find \[\angle C\]  

 


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\ 


Mark the correct alternative in each of the following: 

In a ∆ABC, if a = 2, \[\angle B = 60°\]  and\[\angle C = 75°\] 

 


Mark the correct alternative in each of the following: 

In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\]   then c is a root of the equation 


Mark the correct alternative in each of the following:

In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×