मराठी

A Person Observes the Angle of Elevation of the Peak of a Hill from a Station to Be α. He Walks C Metres Along a Slope Inclined at an Angle β and Finds the Angle of Elevation of the Peak - Mathematics

Advertisements
Advertisements

प्रश्न

A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\] 

उत्तर

Suppose, AB is a peak whose height above the ground is t+x. 

 

\[In \bigtriangleup DFC, \]

\[\sin\beta = \frac{x}{c} \]

\[ \Rightarrow x = c\sin\beta\]

\[and \]

\[\tan\beta = \frac{x}{y}\]

\[ \Rightarrow y = \frac{x}{\tan\beta} = \frac{c\sin\beta}{\sin\beta} \times \cos\beta = c\cos\beta . . . \left( 1 \right)\]

\[In ∆ ADE, \]

\[\tan\gamma = \frac{t}{z}\]

\[ \Rightarrow z = t \cot\gamma . . . \left( 2 \right)\]

\[\]

\[In ∆ ABC, \]

\[\tan\alpha = \frac{t + x}{y + z}\]

\[\]

\[ \Rightarrow t + x = \left( c\cos\beta\tan\alpha + tcot\gamma \right)\tan\alpha \left( from \left( 1 \right) and \left( 2 \right) \right)\]

\[ \Rightarrow t - tcot\gamma\tan\alpha = c\cos\beta\tan\alpha - c\sin\beta \left( \because x = c\sin\beta \right)\]

\[ \Rightarrow t\left( 1 - \frac{\sin\alpha\cos\gamma}{\cos\alpha\sin\gamma} \right) = c\left( \frac{\cos\beta\sin\alpha - \cos\alpha\sin\beta}{\cos\alpha} \right)\]

\[ \Rightarrow t\left( \frac{\sin\gamma\cos\alpha - \sin\alpha\cos\gamma}{\cos\alpha\sin\gamma} \right) = c\frac{\sin\left( \alpha - \beta \right)}{\cos\alpha}\]

\[ \Rightarrow t\frac{\sin\left( \gamma - \beta \right)}{\cos\alpha\sin\gamma} = c\frac{\sin\left( \alpha - \beta \right)}{\cos\alpha}\]

\[ \Rightarrow t = c\frac{\sin\gamma\sin\left( \alpha - \beta \right)}{\sin\left( \gamma - \beta \right)} . . . \left( 3 \right)\]

\[\text{ Now }, \]

\[AB = t + x = c\frac{\sin\gamma\sin\left( \alpha - \beta \right)}{\sin\left( \gamma - \beta \right)} + c\sin\beta \left( \text{ using }\left( 3 \right) \right)\]

\[ = c\left( \frac{\sin\gamma\sin\left( \alpha - \beta \right)}{\sin\left( \gamma - \beta \right)} + \sin\beta \right)\]

\[ = c\left[ \frac{\sin\gamma\sin\left( \alpha - \beta \right) + \sin\beta\sin\left( \gamma - \beta \right)}{\sin\left( \gamma - \beta \right)} \right]\]

\[ = c\left[ \frac{\sin\gamma\sin\alpha\cos\beta - \sin\beta\sin\gamma\cos\alpha + \sin\beta\sin\gamma\cos\alpha - \sin\beta\cos\gamma\sin\alpha}{\sin\left( \gamma - \beta \right)} \right]\]

\[ = c\left[ \frac{\sin\gamma\sin\alpha\cos\beta - \sin\beta\cos\gamma\sin\alpha}{\sin\left( \gamma - \beta \right)} \right]\]

\[ = c\left[ \frac{\sin\alpha\sin\left( \gamma - \beta \right)}{\sin\left( \gamma - \beta \right)} \right]\]

\[ = \frac{c\sin\alpha\sin\left( \gamma - \beta \right)}{\sin\left( \gamma - \beta \right)}\]

\[\text{ Hence proved } . \]

 

shaalaa.com
Sine and Cosine Formulae and Their Applications
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Sine and cosine formulae and their applications - Exercise 10.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 30 | पृष्ठ १४

संबंधित प्रश्‍न

In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C


In triangle ABC, prove the following: 

\[\frac{a + b}{c} = \frac{\cos \left( \frac{A - B}{2} \right)}{\sin \frac{C}{2}}\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\] 


In triangle ABC, prove the following: 

\[a^2 \sin \left( B - C \right) = \left( b^2 - c^2 \right) \sin A\]

 


In triangle ABC, prove the following: 

\[\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}\]

 


In triangle ABC, prove the following: 

\[a \left( \sin B - \sin C \right) + \left( \sin C - \sin A \right) + c \left( \sin A - \sin B \right) = 0\]

 


In triangle ABC, prove the following: 

\[\frac{\cos^2 B - \cos^2 C}{b + c} + \frac{\cos^2 C - \cos^2 A}{c + a} + \frac{co s^2 A - \cos^2 B}{a + b} = 0\]

 


In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]


In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]


In triangle ABC, prove the following: 

\[a \cos A + b\cos B + c \cos C = 2b \sin A \sin C = 2 c \sin A \sin B\]

 


In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 


In ∆ABC, prove that if θ be any angle, then b cosθ = c cos (A − θ) + a cos (C + θ). 


In ∆ABC, if a2b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P. 


At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain. 


If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]


In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C


In ∆ABC, prove  the following: 

\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]

 


In ∆ABC, prove the following:

\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\] 

 


In ∆ABC, prove the following: 

\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]


In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\]  Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\] 


In \[∆ ABC, if \angle B = 60°,\]  prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\] 



Answer  the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\]  find a

   

Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\]  then show that c = a


Answer  the following questions in one word or one sentence or as per exact requirement of the question.

In a ∆ABC, if sinA and sinB are the roots of the equation  \[c^2 x^2 - c\left( a + b \right)x + ab = 0\]  then find \[\angle C\]  

 


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

In ∆ABC, if a = 8, b = 10, c = 12 and C = λA, find the value of λ


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles ABC


Mark the correct alternative in each of the following: 

In a ∆ABC, if a = 2, \[\angle B = 60°\]  and\[\angle C = 75°\] 

 


Mark the correct alternative in each of the following: 

In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) = 


Mark the correct alternative in each of the following: 

In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\]   then c is a root of the equation 


Mark the correct alternative in each of the following:

In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]  


Find the value of `(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×