Advertisements
Advertisements
प्रश्न
In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]
उत्तर
Consider
\[a\sin\frac{A}{2}\sin\left( \frac{B - C}{2} \right) + b\sin\frac{B}{2}\sin\left( \frac{C - A}{2} \right) + c\sin\frac{C}{2}\sin\left( \frac{A - B}{2} \right)\]
\[ = k\left[ \sin\left\{ \pi - \left( B + C \right) \right\}\sin\frac{A}{2}\sin\left( \frac{B - C}{2} \right) + \sin\left\{ \pi - \left( C + A \right) \right\} \sin\frac{B}{2}\sin\left( \frac{C - A}{2} \right) + \sin\left\{ \pi - \left( A + B \right) \right\}\sin\frac{C}{2}\sin\left( \frac{A - B}{2} \right) \right] \left( \because A + B + C = \pi \right)\]
\[ = k\left[ \sin\left( B + C \right)\sin\frac{A}{2}\sin\left( \frac{B - C}{2} \right) + \sin\left( A + C \right)\sin\frac{B}{2}\sin\left( \frac{C - A}{2} \right) + \sin\left( A + B \right)\sin\frac{C}{2}\sin\left( \frac{A - B}{2} \right) \right]\]
\[ = k\left[ 2\sin\left( \frac{B + C}{2} \right)\cos\left( \frac{B - C}{2} \right)\sin\frac{A}{2}\sin\left( \frac{B - C}{2} \right) + 2\sin\left( \frac{A + C}{2} \right)\cos\left( \frac{C - A}{2} \right)\sin\frac{B}{2}\sin\left( \frac{C - A}{2} \right) + 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)\sin\frac{C}{2}\sin\left( \frac{A - B}{2} \right) \right]\]
\[ = 2k\left[ \sin\left( \frac{B + C}{2} \right)\sin\frac{A}{2}\sin\frac{A}{2}\sin\left( \frac{B - C}{2} \right) + \sin\left( \frac{A + C}{2} \right)\sin\frac{B}{2}\sin\frac{B}{2}\sin\left( \frac{C - A}{2} \right) + \sin\left( \frac{A + B}{2} \right)\sin\frac{C}{2}\sin\frac{C}{2}\sin\left( \frac{A - B}{2} \right) \right]\]
\[ = 2k\left[ \sin\left( \frac{B + C}{2} \right)\sin\left( \frac{B - C}{2} \right) \sin^2 \frac{A}{2} + \sin\left( \frac{A + C}{2} \right)\sin\left( \frac{C - A}{2} \right) \sin^2 \frac{B}{2} + \sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right) \sin^2 \frac{C}{2} \right]\]
\[ = 2k \sin^2 \frac{A}{2}\left( \sin^2 \frac{B}{2} - \sin^2 \frac{C}{2} \right) + 2k \sin^2 \frac{B}{2}\left( \sin^2 \frac{C}{2} - \sin^2 \frac{A}{2} \right) + 2k \sin^2 \frac{C}{2}\left( \sin^2 \frac{A}{2} - \sin^2 \frac{B}{2} \right)\]
\[ = 2k\left( \sin^2 \frac{A}{2} \sin^2 \frac{B}{2} - \sin^2 \frac{A}{2} \sin^2 \frac{C}{2} + \sin^2 \frac{B}{2} \sin^2 \frac{C}{2} - \sin^2 \frac{A}{2} \sin^2 \frac{B}{2} + \sin^2 \frac{A}{2} \sin^2 \frac{C}{2} - \sin^2 \frac{C}{2} \sin^2 \frac{B}{2} \right)\]
\[ = k\left( 0 \right)\]
\[ = 0\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
In triangle ABC, prove the following:
In any triangle ABC, prove the following:
In triangle ABC, prove the following:
\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\]
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]
In triangle ABC, prove the following:
\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]
In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\]
The upper part of a tree broken by the wind makes an angle of 30° with the ground and the distance from the root to the point where the top of the tree touches the ground is 15 m. Using sine rule, find the height of the tree.
If the sides a, b and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]
In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\] show that its area is \[\frac{15\sqrt{3}}{2} sq\].units.
The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]
In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]
a cos A + b cos B + c cos C = 2b sin A sin C
In ∆ABC, prove the following:
\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]
In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\] Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\]
In \[∆ ABC, if \angle B = 60°,\] prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]
If in \[∆ ABC, \cos^2 A + \cos^2 B + \cos^2 C = 1\] prove that the triangle is right-angled.
In \[∆ ABC \text{ if } \cos C = \frac{\sin A}{2 \sin B}\] prove that the triangle is isosceles.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\] find a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\] then show that c = a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if sinA and sinB are the roots of the equation \[c^2 x^2 - c\left( a + b \right)x + ab = 0\] then find \[\angle C\]
Mark the correct alternative in each of the following:
In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]
Find the value of `(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)`
If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = –(xy + 1)]