Advertisements
Advertisements
प्रश्न
In ∆ABC, prove the following:
\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]
उत्तर
\[\text{ Let } \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k . . . \left( 1 \right)\]
\[\text{ LHS } = \sin^3 A\cos\left( B - C \right) + \sin^3 B\cos\left( C - A \right) + \sin^3 C\cos\left( A - B \right)\]
\[ = \sin^2 A\left\{ \sin A\cos\left( B - C \right) \right\} + \sin^2 B\left\{ \sin B\cos\left( C - A \right) \right\} + \sin^2 A\left\{ \sinA\cos\left( A - B \right) \right\}\]
\[ = \frac{a^2}{k^2}\left\{ \sin A\cos\left( B - C \right) \right\} + \frac{b^2}{k^2}\left\{ \sin B\cos\left( C - A \right) \right\} + \frac{c^2}{k^2}\left\{ \sin A\cos\left( A - B \right) \right\} \left[ \text{ from } \left( 1 \right) \right]\]
\[ = \frac{1}{2 k^2}\left[ a^2 \left\{ 2\sin A\cos\left( B - C \right) \right\} + b^2 \left\{ 2\sin B\cos\left( C - A \right) \right\} + c^2 \left\{ 2\sinA\cos\left( A - B \right) \right\} \right]\]
\[ = \frac{1}{2 k^2}\left[ a^2 \left\{ 2\sin\left( \pi - \left( B + C \right) \right)\cos\left( B - C \right) \right\} + b^2 \left\{ 2\sin\left( \pi - \left( A + C \right) \right)\cos\left( C - A \right) \right\} + c^2 \left\{ 2\sin\left( \pi - \left( B + C \right) \right)\cos\left( A - B \right) \right\} \right]\]
\[ = \frac{1}{2 k^2}\left[ a^2 \left\{ 2\sin\left( B + C \right)\cos\left( B - C \right) \right\} + b^2 \left\{ 2\sin\left( C + A \right)\cos\left( C - A \right) \right\} + c^2 \left\{ 2\sin\left( A + B \right)\cos\left( A - B \right) \right\} \right]\]
\[ = \frac{1}{2 k^2}\left[ a^2 \left\{ \sin2B + \sin2C \right\} + b^2 \left\{ \sin2C + \sin2A \right\} + c^2 \left\{ \sin2A + \sin2B \right\} \right]\]
\[ = \frac{1}{2 k^2}\left[ 2 a^2 \left\{ \sin B\cos B + \sin C\cos C \right\} + 2 b^2 \left\{ \sin C\cos C + \sin A\cos A \right\} + 2 c^2 \left\{ \sin A\cos A + \sin B\cos B \right\} \right]\]
\[ = \frac{1}{2 k^3}\left[ 2 a^2 \left\{ k\sin B\cos B + k\sin C\cos C \right\} + 2 b^2 \left\{ k\sin C\cos C + k\sin A\cos A \right\} + 2 c^2 \left\{ k\sin A\cos A + k\sin B\cos B \right\} \right]\]
\[ = \frac{1}{k^3}\left[ a^2 \left\{ b\cos B + c\cos C \right\} + 2 b^2 \left\{ c\cos C + a\cos A \right\} + 2 c^2 \left\{ a\cos A + a\cos B \right\} \right]\]
\[ = \frac{1}{k^3}\left[ ab\left( a\cos B + b\cos A \right) + bc\left( b\cos C + c\cos B \right) + ac\left( a\cos C + c\cos A \right) \right]\]
\[ = \frac{1}{k^3}\left( abc + bca + acb \right)\]
\[ = 3abc \times \frac{1}{k^3}\]
\[ = 3\sin A\sin B\sin C \times \frac{1}{k^3} \times k^3 \]
\[ = 3\sin A\sin B\sin C\]
\[ = \text{ RHS }\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C.
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\]
In ∆ABC, prove that if θ be any angle, then b cosθ = c cos (A − θ) + a cos (C + θ).
In ∆ABC, if sin2 A + sin2 B = sin2 C. show that the triangle is right-angled.
In ∆ABC, if a2, b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P.
At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain.
A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\]
In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\] show that its area is \[\frac{15\sqrt{3}}{2} sq\].units.
In \[∆ ABC, if a = \sqrt{2}, b = \sqrt{3} \text{ and } c = \sqrt{5}\] show that its area is \[\frac{1}{2}\sqrt{6} sq .\] units.
In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]
In ∆ABC, prove the following:
\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\]
In ∆ABC, prove the following:
\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\]
In ∆ABC, prove the following:
\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]
In ∆ABC, prove the following:
\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]
In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\] Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\]
In \[∆ ABC, if \angle B = 60°,\] prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]
Two ships leave a port at the same time. One goes 24 km/hr in the direction N 38° E and other travels 32 km/hr in the direction S 52° E. Find the distance between the ships at the end of 3 hrs.
Answer the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\] find a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\] then show that c = a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles A, B, C.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any ∆ABC, find the value of
\[\sum^{}_{}a\left( \text{ sin }B - \text{ sin }C \right)\]
Mark the correct alternative in each of the following:
In a ∆ABC, if a = 2, \[\angle B = 60°\] and\[\angle C = 75°\]
Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is
Mark the correct alternative in each of the following:
In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) =
Mark the correct alternative in each of the following:
In a ∆ABC, if \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is
Find the value of `(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)`
If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = –(xy + 1)]