Advertisements
Advertisements
प्रश्न
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\] then show that c = a.
उत्तर
Given: \[\cos A = \frac{\sin B}{2\sin C}\]
\[\Rightarrow \frac{b^2 + c^2 - a^2}{2bc} = \frac{b}{2c}\] (Using sine rule and cosine rule)
\[\Rightarrow b^2 + c^2 - a^2 = b^2\]
\[\Rightarrow c^2 = a^2\]
\[\Rightarrow c = a\]
APPEARS IN
संबंधित प्रश्न
If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides.
In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C.
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\]
In ∆ABC, if sin2 A + sin2 B = sin2 C. show that the triangle is right-angled.
In ∆ABC, if a2, b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P.
At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain.
If the sides a, b and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]
In \[∆ ABC, if a = \sqrt{2}, b = \sqrt{3} \text{ and } c = \sqrt{5}\] show that its area is \[\frac{1}{2}\sqrt{6} sq .\] units.
The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]
In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C.
In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]
In ∆ABC, prove the following:
\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]
In ∆ABC, prove the following:
\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\]
In ∆ABC, prove that \[a \left( \cos B + \cos C - 1 \right) + b \left( \cos C + \cos A - 1 \right) + c\left( \cos A + \cos B - 1 \right) = 0\]
a cos A + b cos B + c cos C = 2b sin A sin C
In ∆ABC, prove the following:
\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]
In ∆ABC, prove the following:
\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]
In \[∆ ABC, if \angle B = 60°,\] prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]
If in \[∆ ABC, \cos^2 A + \cos^2 B + \cos^2 C = 1\] prove that the triangle is right-angled.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If the sides of a triangle are proportional to 2, \[\sqrt{6}\] and \[\sqrt{3} - 1\] find the measure of its greatest angle.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles A, B, C.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\
Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] =
Mark the correct alternative in each of the following:
In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) =
Mark the correct alternative in each of the following:
In a ∆ABC, if \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is
Mark the correct alternative in each of the following:
In any ∆ABC, the value of \[2ac\sin\left( \frac{A - B + C}{2} \right)\] is
Mark the correct alternative in each of the following:
In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]
Find the value of `(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)`
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.