Advertisements
Advertisements
प्रश्न
In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\]
उत्तर
\[a\left( \cos C - \cos B \right)\]
\[ = k\left( \sin A\cos C - \sin A\cos B \right) \left[ \because \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \right]\]
\[ = \frac{k}{2}\left( 2\sin A\cos C - 2\sin A\cos B \right)\]
\[ = \frac{k}{2}\left[ \sin\left( A + C \right) + \sin\left( A - C \right) - \sin\left( A + B \right) - \sin\left( A - B \right) \right]\]
\[ = \frac{k}{2}\left[ \sin\left( \pi - B \right) + \sin\left( A - C \right) - \sin\left( \pi - C \right) - \sin\left( A - B \right) \right] \left( \because A + B + C = \pi \right)\]
\[ = \frac{k}{2}\left[ \sin B - \sin C + \sin\left( A - C \right) - \sin\left( A - B \right) \right]\]
\[ = \frac{k}{2}\left[ 2\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{B + C}{2} \right) + 2\sin\left( \frac{A - C - A + B}{2} \right)\cos\left( \frac{A - C + A - B}{2} \right) \right]\]
\[ = k\sin\left( \frac{B - C}{2} \right)\left[ \cos\left( \frac{\pi}{2} - \frac{A}{2} \right) + \cos\left\{ \frac{2A - \left( \pi - A \right)}{2} \right\} \right]\]
\[ = k\sin\left( \frac{B - C}{2} \right)\left( \sin\frac{A}{2} + \sin\frac{3A}{2} \right)\]
\[ = k\sin\left( \frac{B - C}{2} \right)\left[ 2\sin\left( \frac{\frac{A}{2} + \frac{3A}{2}}{2} \right)\cos\left( \frac{\frac{3A}{2} - \frac{A}{2}}{2} \right) \right]\]
\[ = 2k\sin\left( \frac{B - C}{2} \right)\sin A\cos\frac{A}{2}\]
\[ = 4k\sin\left( \frac{B - C}{2} \right)\sin\frac{A}{2} \cos^2 \frac{A}{2} . . . \left( 1 \right)\]
\[\text{ Now }, \]
\[\text{ Consider }\]
\[2\left( b - c \right) \cos^2 \frac{A}{2}\]
\[ = 2k\left( \sin B - \sin C \right) \cos^2 \frac{A}{2}\]
\[ = 2k\left[ 2\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{B + C}{2} \right) \right] \cos^2 \frac{A}{2}\]
\[ = 4k\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{\pi}{2} - \frac{A}{2} \right) \cos^2 \frac{A}{2}\]
\[ = 4k\sin\left( \frac{B - C}{2} \right)\sin\frac{A}{2} \cos^2 \frac{A}{2} . . . \left( 2 \right) \]
\[\text{ From } \left( 1 \right) \text{ & }\left( 2 \right), \text{ we get }\]
\[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2}\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides.
If in ∆ABC, ∠C = 105°, ∠B = 45° and a = 2, then find b.
In triangle ABC, prove the following:
In any triangle ABC, prove the following:
In triangle ABC, prove the following:
\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\]
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In ∆ABC, if a2, b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P.
A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\]
The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]
In ∆ABC, prove the following:
\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]
In ∆ABC, prove the following:
\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\]
In ∆ABC, prove the following:
\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]
In \[∆ ABC, if \angle B = 60°,\] prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]
Two ships leave a port at the same time. One goes 24 km/hr in the direction N 38° E and other travels 32 km/hr in the direction S 52° E. Find the distance between the ships at the end of 3 hrs.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\] find a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\] then show that c = a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles A, B, C.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any ∆ABC, find the value of
\[\sum^{}_{}a\left( \text{ sin }B - \text{ sin }C \right)\]
Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is
Mark the correct alternative in each of the following:
In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) =
Mark the correct alternative in each of the following:
In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\] then c is a root of the equation
Mark the correct alternative in each of the following:
In a ∆ABC, if \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is
Mark the correct alternative in each of the following:
In any ∆ABC, the value of \[2ac\sin\left( \frac{A - B + C}{2} \right)\] is
Mark the correct alternative in each of the following:
In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]
Find the value of `(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)`
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.