मराठी

In ∆Abc, Prove that a ( Cos C − Cos B ) = 2 ( B − C ) Cos 2 a 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 

उत्तर

\[\text{ Consider }\]
\[a\left( \cos C - \cos B \right)\]
\[ = k\left( \sin A\cos C - \sin A\cos B \right) \left[ \because \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \right]\]
\[ = \frac{k}{2}\left( 2\sin A\cos C - 2\sin A\cos B \right)\]
\[ = \frac{k}{2}\left[ \sin\left( A + C \right) + \sin\left( A - C \right) - \sin\left( A + B \right) - \sin\left( A - B \right) \right]\]
\[ = \frac{k}{2}\left[ \sin\left( \pi - B \right) + \sin\left( A - C \right) - \sin\left( \pi - C \right) - \sin\left( A - B \right) \right] \left( \because A + B + C = \pi \right)\]
\[ = \frac{k}{2}\left[ \sin B - \sin C + \sin\left( A - C \right) - \sin\left( A - B \right) \right]\]
\[ = \frac{k}{2}\left[ 2\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{B + C}{2} \right) + 2\sin\left( \frac{A - C - A + B}{2} \right)\cos\left( \frac{A - C + A - B}{2} \right) \right]\]
\[ = k\sin\left( \frac{B - C}{2} \right)\left[ \cos\left( \frac{\pi}{2} - \frac{A}{2} \right) + \cos\left\{ \frac{2A - \left( \pi - A \right)}{2} \right\} \right]\]
\[ = k\sin\left( \frac{B - C}{2} \right)\left( \sin\frac{A}{2} + \sin\frac{3A}{2} \right)\]
\[ = k\sin\left( \frac{B - C}{2} \right)\left[ 2\sin\left( \frac{\frac{A}{2} + \frac{3A}{2}}{2} \right)\cos\left( \frac{\frac{3A}{2} - \frac{A}{2}}{2} \right) \right]\]
\[ = 2k\sin\left( \frac{B - C}{2} \right)\sin A\cos\frac{A}{2}\]
\[ = 4k\sin\left( \frac{B - C}{2} \right)\sin\frac{A}{2} \cos^2 \frac{A}{2} . . . \left( 1 \right)\]
\[\text{ Now }, \]
\[\text{ Consider }\]
\[2\left( b - c \right) \cos^2 \frac{A}{2}\]
\[ = 2k\left( \sin B - \sin C \right) \cos^2 \frac{A}{2}\]
\[ = 2k\left[ 2\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{B + C}{2} \right) \right] \cos^2 \frac{A}{2}\]
\[ = 4k\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{\pi}{2} - \frac{A}{2} \right) \cos^2 \frac{A}{2}\]
\[ = 4k\sin\left( \frac{B - C}{2} \right)\sin\frac{A}{2} \cos^2 \frac{A}{2} . . . \left( 2 \right) \]
\[\text{ From } \left( 1 \right) \text{ & }\left( 2 \right), \text{ we get }\]
\[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2}\]
\[\text{ Hence proved } .\]

 

shaalaa.com
Sine and Cosine Formulae and Their Applications
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Sine and cosine formulae and their applications - Exercise 10.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 24 | पृष्ठ १३

संबंधित प्रश्‍न

If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides. 


If in ∆ABC, ∠C = 105°, ∠B = 45° and a = 2, then find b


In triangle ABC, prove the following:

\[\frac{c}{a - b} = \frac{\tan\left( \frac{A}{2} \right) + \tan \left( \frac{B}{2} \right)}{\tan \left( \frac{A}{2} \right) - \tan \left( \frac{B}{2} \right)}\]

 


In any triangle ABC, prove the following: 

\[\sin \left( \frac{B - C}{2} \right) = \frac{b - c}{a} \cos\frac{A}{2}\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\] 


In triangle ABC, prove the following: 

\[a^2 \sin \left( B - C \right) = \left( b^2 - c^2 \right) \sin A\]

 


In triangle ABC, prove the following: 

\[\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 \sin \left( B - C \right)}{\sin A} + \frac{b^2 \sin \left( C - A \right)}{\sin B} + \frac{c^2 \sin \left( A - B \right)}{\sin C} = 0\]

 


In triangle ABC, prove the following: 

\[a^2 \left( \cos^2 B - \cos^2 C \right) + b^2 \left( \cos^2 C - \cos^2 A \right) + c^2 \left( \cos^2 A - \cos^2 B \right) = 0\]

 


In triangle ABC, prove the following:

\[\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} - \frac{1}{a^2} - \frac{1}{b^2}\]

 


In ∆ABC, if a2b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P. 


A person observes the angle of elevation of the peak of a hill from a station to be α. He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be ϒ. Show that the height of the peak above the ground is \[\frac{c \sin \alpha \sin \left( \gamma - \beta \right)}{\left( \sin \gamma - \alpha \right)}\] 


The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]


In ∆ABC, prove  the following: 

\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]

 


In ∆ABC, prove the following:

\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\] 

 


In ∆ABC, prove the following: 

\[\sin^3 A \cos \left( B - C \right) + \sin^3 B \cos \left( C - A \right) + \sin^3 C \cos \left( A - B \right) = 3 \sin A \sin B \sin C\]


In \[∆ ABC, if \angle B = 60°,\]  prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]


Two ships leave a port at the same time. One goes 24 km/hr in the direction N 38° E and other travels 32 km/hr in the direction S 52° E. Find the distance between the ships at the end of 3 hrs. 


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\] 



Answer  the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\]  find a

   

Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\]  then show that c = a


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\] 

 


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles ABC


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any ∆ABC, find the value of

\[\sum^{}_{}a\left( \text{ sin }B - \text{ sin }C \right)\]


Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is 


Mark the correct alternative in each of the following: 

In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) = 


Mark the correct alternative in each of the following: 

In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\]   then c is a root of the equation 


Mark the correct alternative in each of the following: 

In a ∆ABC, if  \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is 


Mark the correct alternative in each of the following:

In any ∆ABC, the value of  \[2ac\sin\left( \frac{A - B + C}{2} \right)\]  is 


Mark the correct alternative in each of the following:

In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]  


Find the value of `(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)`


If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×