हिंदी

In ∆Abc, Prove that a ( Cos C − Cos B ) = 2 ( B − C ) Cos 2 a 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 

उत्तर

\[\text{ Consider }\]
\[a\left( \cos C - \cos B \right)\]
\[ = k\left( \sin A\cos C - \sin A\cos B \right) \left[ \because \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \right]\]
\[ = \frac{k}{2}\left( 2\sin A\cos C - 2\sin A\cos B \right)\]
\[ = \frac{k}{2}\left[ \sin\left( A + C \right) + \sin\left( A - C \right) - \sin\left( A + B \right) - \sin\left( A - B \right) \right]\]
\[ = \frac{k}{2}\left[ \sin\left( \pi - B \right) + \sin\left( A - C \right) - \sin\left( \pi - C \right) - \sin\left( A - B \right) \right] \left( \because A + B + C = \pi \right)\]
\[ = \frac{k}{2}\left[ \sin B - \sin C + \sin\left( A - C \right) - \sin\left( A - B \right) \right]\]
\[ = \frac{k}{2}\left[ 2\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{B + C}{2} \right) + 2\sin\left( \frac{A - C - A + B}{2} \right)\cos\left( \frac{A - C + A - B}{2} \right) \right]\]
\[ = k\sin\left( \frac{B - C}{2} \right)\left[ \cos\left( \frac{\pi}{2} - \frac{A}{2} \right) + \cos\left\{ \frac{2A - \left( \pi - A \right)}{2} \right\} \right]\]
\[ = k\sin\left( \frac{B - C}{2} \right)\left( \sin\frac{A}{2} + \sin\frac{3A}{2} \right)\]
\[ = k\sin\left( \frac{B - C}{2} \right)\left[ 2\sin\left( \frac{\frac{A}{2} + \frac{3A}{2}}{2} \right)\cos\left( \frac{\frac{3A}{2} - \frac{A}{2}}{2} \right) \right]\]
\[ = 2k\sin\left( \frac{B - C}{2} \right)\sin A\cos\frac{A}{2}\]
\[ = 4k\sin\left( \frac{B - C}{2} \right)\sin\frac{A}{2} \cos^2 \frac{A}{2} . . . \left( 1 \right)\]
\[\text{ Now }, \]
\[\text{ Consider }\]
\[2\left( b - c \right) \cos^2 \frac{A}{2}\]
\[ = 2k\left( \sin B - \sin C \right) \cos^2 \frac{A}{2}\]
\[ = 2k\left[ 2\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{B + C}{2} \right) \right] \cos^2 \frac{A}{2}\]
\[ = 4k\sin\left( \frac{B - C}{2} \right)\cos\left( \frac{\pi}{2} - \frac{A}{2} \right) \cos^2 \frac{A}{2}\]
\[ = 4k\sin\left( \frac{B - C}{2} \right)\sin\frac{A}{2} \cos^2 \frac{A}{2} . . . \left( 2 \right) \]
\[\text{ From } \left( 1 \right) \text{ & }\left( 2 \right), \text{ we get }\]
\[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2}\]
\[\text{ Hence proved } .\]

 

shaalaa.com
Sine and Cosine Formulae and Their Applications
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Sine and cosine formulae and their applications - Exercise 10.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 24 | पृष्ठ १३

संबंधित प्रश्न

If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides. 


If in ∆ABC, ∠C = 105°, ∠B = 45° and a = 2, then find b


In triangle ABC, prove the following: 

\[\frac{a - b}{a + b} = \frac{\tan \left( \frac{A - B}{2} \right)}{\tan \left( \frac{A + B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\left( a - b \right) \cos \frac{C}{2} = c \sin \left( \frac{A - B}{2} \right)\]


In triangle ABC, prove the following:

\[\frac{c}{a - b} = \frac{\tan\left( \frac{A}{2} \right) + \tan \left( \frac{B}{2} \right)}{\tan \left( \frac{A}{2} \right) - \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{c}{a + b} = \frac{1 - \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}{1 + \tan \left( \frac{A}{2} \right) \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{a + b}{c} = \frac{\cos \left( \frac{A - B}{2} \right)}{\sin \frac{C}{2}}\]

 


In any triangle ABC, prove the following: 

\[\sin \left( \frac{B - C}{2} \right) = \frac{b - c}{a} \cos\frac{A}{2}\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\] 


In triangle ABC, prove the following: 

\[\frac{a^2 \sin \left( B - C \right)}{\sin A} + \frac{b^2 \sin \left( C - A \right)}{\sin B} + \frac{c^2 \sin \left( A - B \right)}{\sin C} = 0\]

 


In triangle ABC, prove the following: 

\[b \cos B + c \cos C = a \cos \left( B - C \right)\]

 


In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]


In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]


In triangle ABC, prove the following: 

\[a \cos A + b\cos B + c \cos C = 2b \sin A \sin C = 2 c \sin A \sin B\]

 


\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]


The upper part of a tree broken by the wind makes an angle of 30° with the ground and the distance from the root to the point where the top of the tree touches the ground is 15 m. Using sine rule, find the height of the tree. 


If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]


In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\]  show that its area is \[\frac{15\sqrt{3}}{2} sq\].units. 


In ∆ABC, prove the following: \[c \left( a \cos B - b \cos A \right) = a^2 - b^2\]


In ∆ABC, prove the following

\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\] 

 


In ∆ABC, prove the following:

\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\] 

 


a cos + b cos B + c cos C = 2sin sin 


In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\]  Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\] 


In \[∆ ABC, if \angle B = 60°,\]  prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]


Answer  the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\]  find a

   

Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\] 

 


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

In ∆ABC, if a = 8, b = 10, c = 12 and C = λA, find the value of λ


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

If the sides of a triangle are proportional to 2, \[\sqrt{6}\] and \[\sqrt{3} - 1\] find the measure of its greatest angle. 


Answer the following questions in one word or one sentence or as per exact requirement of the question.  

If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles ABC


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\ 


Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] = 


Mark the correct alternative in each of the following: 

In a ∆ABC, if a = 2, \[\angle B = 60°\]  and\[\angle C = 75°\] 

 


Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is 


Find the value of `(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)`


If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×