Advertisements
Advertisements
प्रश्न
If the sides a, b and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]
उत्तर
\[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2} \text{ is a H . P }. \]
\[ \Leftrightarrow \frac{1}{\sin^2 \frac{A}{2}}, \frac{1}{\sin^2 \frac{B}{2}} \text{ and } \frac{1}{\sin^2 \frac{C}{2}} \text{ is an A . P } . \]
\[ \Leftrightarrow \frac{1}{\sin^2 \frac{B}{2}} - \frac{1}{\sin^2 \frac{A}{2}} = \frac{1}{\sin^2 \frac{C}{2}} - \frac{1}{\sin^2 \frac{B}{2}}\]
\[ \Leftrightarrow \frac{\sin^2 \frac{A}{2} - \sin^2 \frac{B}{2}}{\sin^2 \frac{A}{2} \sin^2 \frac{B}{2}} = \frac{\sin^2 \frac{B}{2} - \sin^2 \frac{C}{2}}{\sin^2 \frac{B}{2} \sin^2 \frac{C}{2}}\]
\[ \Leftrightarrow \frac{\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right)}{\sin^2 \frac{A}{2}} = \frac{\sin\left( \frac{B + C}{2} \right)\sin\left( \frac{B - C}{2} \right)}{\sin^2 \frac{C}{2}}\]
\[ \Leftrightarrow \frac{\cos\left( \frac{C}{2} \right)\sin\left( \frac{A - B}{2} \right)}{\sin^2 \frac{A}{2}} = \frac{\cos\left( \frac{A}{2} \right)\sin\left( \frac{B - C}{2} \right)}{\sin^2 \frac{C}{2}} \left[ As, A + B + C = \pi \right]\]
\[ \Leftrightarrow \sin^2 \frac{C}{2}\cos\left( \frac{C}{2} \right)\sin\left( \frac{A - B}{2} \right) = \sin^2 \frac{A}{2}\cos\left( \frac{A}{2} \right)\sin\left( \frac{B - C}{2} \right)\]
\[ \Leftrightarrow 2\sin\frac{C}{2}\sin\frac{C}{2}\cos\left( \frac{C}{2} \right)\sin\left( \frac{A - B}{2} \right) = 2\sin\frac{A}{2}\sin\frac{A}{2}\cos\left( \frac{A}{2} \right)\sin\left( \frac{B - C}{2} \right)\]
\[ \Leftrightarrow \sin\frac{C}{2}\sin C \sin\left( \frac{A - B}{2} \right) = \sin\frac{A}{2}\sin A\sin\left( \frac{B - C}{2} \right) \left[ \because \sin2\theta = 2sin\thetacos\theta \right]\]
\[ \Leftrightarrow \sin C \cos\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right) = \sin A \cos\left( \frac{B + C}{2} \right) \sin\left( \frac{B - C}{2} \right) \left[ As, A + B + C = \pi \right]\]
\[ \Leftrightarrow \sin C\frac{\left( \sin A - \sin B \right)}{2} = \sin A\frac{\left( \sin B - \sin C \right)}{2} \left[ \sin C - \sin D = 2\cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right) \right]\]
\[ \Leftrightarrow \sin C\left( \sin A - \sin B \right) = \sin A\left( \sin B - \sin C \right)\]
\[ \Leftrightarrow ck\left( ak - bk \right) = ak\left( bk - ck \right) \left( \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = k \left( say \right) \right)\]
\[ \Leftrightarrow ca - cb = ab - ac\]
\[ \Leftrightarrow 2ac = ab + bc\]
\[ \Leftrightarrow \frac{2}{b} = \frac{1}{c} + \frac{1}{a} \left[ \text{ multiplying both the sides by abc } \right]\]
\[ \Leftrightarrow \text{ a, b, c are in H . P } . \]
APPEARS IN
संबंधित प्रश्न
In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C.
In triangle ABC, prove the following:
In any triangle ABC, prove the following:
In triangle ABC, prove the following:
\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\]
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]
In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]
\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]
In ∆ABC, if sin2 A + sin2 B = sin2 C. show that the triangle is right-angled.
In ∆ABC, prove the following: \[b \left( c \cos A - a \cos C \right) = c^2 - a^2\]
In ∆ABC, prove that \[a \left( \cos B + \cos C - 1 \right) + b \left( \cos C + \cos A - 1 \right) + c\left( \cos A + \cos B - 1 \right) = 0\]
a cos A + b cos B + c cos C = 2b sin A sin C
In ∆ABC, prove the following:
\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]
In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\] Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\]
In \[∆ ABC, if \angle B = 60°,\] prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]
If in \[∆ ABC, \cos^2 A + \cos^2 B + \cos^2 C = 1\] prove that the triangle is right-angled.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\] then show that c = a.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles A, B, C.
Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is
Mark the correct alternative in each of the following:
In a ∆ABC, if \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is
Mark the correct alternative in each of the following:
In any ∆ABC, the value of \[2ac\sin\left( \frac{A - B + C}{2} \right)\] is
If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = –(xy + 1)]