मराठी

In Triangle Abc, Prove the Following: a ( Sin B − Sin C ) + ( Sin C − Sin a ) + C ( Sin a − Sin B ) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

In triangle ABC, prove the following: 

\[a \left( \sin B - \sin C \right) + \left( \sin C - \sin A \right) + c \left( \sin A - \sin B \right) = 0\]

 

उत्तर

Let \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k\]

Then,
Consider the LHS of the equation

\[a \left( \sin B - \sin C \right) + \left( \sin C - \sin A \right) + c \left( \sin A - \sin B \right) = 0\]

\[LHS = a\left( \sin B - \sin C \right) + b\left( \sin C - \sin A \right) + c\left( sin A - sin B \right)\]
\[ = k\sin A\left( \sin B - \sin C \right) + k\sin B\left( \sin C - \sin A \right) + k\sin C\left( sin A - sin B \right) \]
\[ = k\sin A\sin B - k\sin A\sin C + k\sin B\sin C - k\sin B\sin  A + ksin C\sinA - k\sinC\sinB\]
\[ = 0 = RHS\]
\[\text{ Hence proved } . \]

shaalaa.com
Sine and Cosine Formulae and Their Applications
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Sine and cosine formulae and their applications - Exercise 10.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 14 | पृष्ठ १३

संबंधित प्रश्‍न

If in ∆ABC, ∠C = 105°, ∠B = 45° and a = 2, then find b


In triangle ABC, prove the following:

\[\frac{c}{a - b} = \frac{\tan\left( \frac{A}{2} \right) + \tan \left( \frac{B}{2} \right)}{\tan \left( \frac{A}{2} \right) - \tan \left( \frac{B}{2} \right)}\]

 


In triangle ABC, prove the following: 

\[\frac{a + b}{c} = \frac{\cos \left( \frac{A - B}{2} \right)}{\sin \frac{C}{2}}\]

 


In any triangle ABC, prove the following: 

\[\sin \left( \frac{B - C}{2} \right) = \frac{b - c}{a} \cos\frac{A}{2}\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\] 


In triangle ABC, prove the following: 

\[b \sin B - c \sin C = a \sin \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}\]

 


In triangle ABC, prove the following:

\[\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} - \frac{1}{a^2} - \frac{1}{b^2}\]

 


In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]


\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]


In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 


In ∆ABC, if sin2 A + sin2 B = sin2 C. show that the triangle is right-angled. 


If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]


In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\]  show that its area is \[\frac{15\sqrt{3}}{2} sq\].units. 


The sides of a triangle are a = 4, b = 6 and c = 8. Show that \[8 \cos A + 16 \cos B + 4 \cos C = 17\]


In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C


In ∆ABC, prove the following: \[b \left( c \cos A - a \cos C \right) = c^2 - a^2\]


In ∆ABC, prove the following

\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\] 

 


In ∆ABC, prove the following:

\[\frac{c - b \cos A}{b - c \cos A} = \frac{\cos B}{\cos C}\] 

 


In ∆ABC, prove that  \[a \left( \cos B + \cos C - 1 \right) + b \left( \cos C + \cos A - 1 \right) + c\left( \cos A + \cos B - 1 \right) = 0\]


In ∆ABC, prove the following: 

\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]


In ∆ABC, prove the following:

\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]


In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\]  Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\] 


In \[∆ ABC, if \angle B = 60°,\]  prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]


If in \[∆ ABC, \cos^2 A + \cos^2 B + \cos^2 C = 1\] prove that the triangle is right-angled. 

 


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\] 



Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if \[\cos A = \frac{\sin B}{2\sin C}\]  then show that c = a


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\ 


Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] = 


Mark the correct alternative in each of the following: 

In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) = 


Mark the correct alternative in each of the following: 

In a triangle ABC, a = 4, b = 3, \[\angle A = 60°\]   then c is a root of the equation 


If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = –(xy + 1)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×