English

In ∆Abc, Prove That: a Sin a 2 Sin ( B − C 2 ) + B Sin B 2 Sin ( C − a 2 ) + C Sin C 2 Sin ( a − B 2 ) = 0 - Mathematics

Advertisements
Advertisements

Question

In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]

Solution

Consider 

\[a\sin\frac{A}{2}\sin\left( \frac{B - C}{2} \right) + b\sin\frac{B}{2}\sin\left( \frac{C - A}{2} \right) + c\sin\frac{C}{2}\sin\left( \frac{A - B}{2} \right)\] 

\[= k\left[ \sin A\sin\frac{A}{2}\sin\left( \frac{B - C}{2} \right) + \sin B\sin\frac{B}{2}\sin\left( \frac{C - A}{2} \right) + \sin C\sin\frac{C}{2}\sin\left( \frac{A - B}{2} \right) \right]\]
\[ = k\left[ \sin\left\{ \pi - \left( B + C \right) \right\}\sin\frac{A}{2}\sin\left( \frac{B - C}{2} \right) + \sin\left\{ \pi - \left( C + A \right) \right\} \sin\frac{B}{2}\sin\left( \frac{C - A}{2} \right) + \sin\left\{ \pi - \left( A + B \right) \right\}\sin\frac{C}{2}\sin\left( \frac{A - B}{2} \right) \right] \left( \because A + B + C = \pi \right)\]
\[ = k\left[ \sin\left( B + C \right)\sin\frac{A}{2}\sin\left( \frac{B - C}{2} \right) + \sin\left( A + C \right)\sin\frac{B}{2}\sin\left( \frac{C - A}{2} \right) + \sin\left( A + B \right)\sin\frac{C}{2}\sin\left( \frac{A - B}{2} \right) \right]\]
\[ = k\left[ 2\sin\left( \frac{B + C}{2} \right)\cos\left( \frac{B - C}{2} \right)\sin\frac{A}{2}\sin\left( \frac{B - C}{2} \right) + 2\sin\left( \frac{A + C}{2} \right)\cos\left( \frac{C - A}{2} \right)\sin\frac{B}{2}\sin\left( \frac{C - A}{2} \right) + 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right)\sin\frac{C}{2}\sin\left( \frac{A - B}{2} \right) \right]\]
\[ = 2k\left[ \sin\left( \frac{B + C}{2} \right)\sin\frac{A}{2}\sin\frac{A}{2}\sin\left( \frac{B - C}{2} \right) + \sin\left( \frac{A + C}{2} \right)\sin\frac{B}{2}\sin\frac{B}{2}\sin\left( \frac{C - A}{2} \right) + \sin\left( \frac{A + B}{2} \right)\sin\frac{C}{2}\sin\frac{C}{2}\sin\left( \frac{A - B}{2} \right) \right]\]
\[ = 2k\left[ \sin\left( \frac{B + C}{2} \right)\sin\left( \frac{B - C}{2} \right) \sin^2 \frac{A}{2} + \sin\left( \frac{A + C}{2} \right)\sin\left( \frac{C - A}{2} \right) \sin^2 \frac{B}{2} + \sin\left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right) \sin^2 \frac{C}{2} \right]\]
\[ = 2k \sin^2 \frac{A}{2}\left( \sin^2 \frac{B}{2} - \sin^2 \frac{C}{2} \right) + 2k \sin^2 \frac{B}{2}\left( \sin^2 \frac{C}{2} - \sin^2 \frac{A}{2} \right) + 2k \sin^2 \frac{C}{2}\left( \sin^2 \frac{A}{2} - \sin^2 \frac{B}{2} \right)\]
\[ = 2k\left( \sin^2 \frac{A}{2} \sin^2 \frac{B}{2} - \sin^2 \frac{A}{2} \sin^2 \frac{C}{2} + \sin^2 \frac{B}{2} \sin^2 \frac{C}{2} - \sin^2 \frac{A}{2} \sin^2 \frac{B}{2} + \sin^2 \frac{A}{2} \sin^2 \frac{C}{2} - \sin^2 \frac{C}{2} \sin^2 \frac{B}{2} \right)\]
\[ = k\left( 0 \right)\]
\[ = 0\]

Hence proved.

shaalaa.com
Sine and Cosine Formulae and Their Applications
  Is there an error in this question or solution?
Chapter 10: Sine and cosine formulae and their applications - Exercise 10.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 10 Sine and cosine formulae and their applications
Exercise 10.1 | Q 20 | Page 13

RELATED QUESTIONS

In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C


In triangle ABC, prove the following: 

\[\left( a - b \right) \cos \frac{C}{2} = c \sin \left( \frac{A - B}{2} \right)\]


In triangle ABC, prove the following: 

\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\] 


In triangle ABC, prove the following: 

\[b \sin B - c \sin C = a \sin \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[a^2 \sin \left( B - C \right) = \left( b^2 - c^2 \right) \sin A\]

 


In triangle ABC, prove the following: 

\[a \left( \sin B - \sin C \right) + \left( \sin C - \sin A \right) + c \left( \sin A - \sin B \right) = 0\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 \sin \left( B - C \right)}{\sin A} + \frac{b^2 \sin \left( C - A \right)}{\sin B} + \frac{c^2 \sin \left( A - B \right)}{\sin C} = 0\]

 


In triangle ABC, prove the following:

\[\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} - \frac{1}{a^2} - \frac{1}{b^2}\]

 


In triangle ABC, prove the following: 

\[\frac{\cos^2 B - \cos^2 C}{b + c} + \frac{\cos^2 C - \cos^2 A}{c + a} + \frac{co s^2 A - \cos^2 B}{a + b} = 0\]

 


In triangle ABC, prove the following: 

\[a \cos A + b\cos B + c \cos C = 2b \sin A \sin C = 2 c \sin A \sin B\]

 


In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 


In ∆ABC, if a2b2 and c2 are in A.P., prove that cot A, cot B and cot C are also in A.P. 


The upper part of a tree broken by the wind makes an angle of 30° with the ground and the distance from the root to the point where the top of the tree touches the ground is 15 m. Using sine rule, find the height of the tree. 


At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain. 


If the sides ab and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]


In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\]  show that its area is \[\frac{15\sqrt{3}}{2} sq\].units. 


In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C


In ∆ABC, prove that  \[a \left( \cos B + \cos C - 1 \right) + b \left( \cos C + \cos A - 1 \right) + c\left( \cos A + \cos B - 1 \right) = 0\]


In ∆ABC, prove the following:

\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]


In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\]  Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\] 


Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

Find the area of the triangle ∆ABC in which a = 1, b = 2 and \[\angle C = 60º\] 



Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\] 

 


Answer  the following questions in one word or one sentence or as per exact requirement of the question.

In a ∆ABC, if sinA and sinB are the roots of the equation  \[c^2 x^2 - c\left( a + b \right)x + ab = 0\]  then find \[\angle C\]  

 


Mark the correct alternative in each of the following: 

In a ∆ABC, if a = 2, \[\angle B = 60°\]  and\[\angle C = 75°\] 

 


Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is 


Mark the correct alternative in each of the following: 

In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) = 


Mark the correct alternative in each of the following:

In any ∆ABC, the value of  \[2ac\sin\left( \frac{A - B + C}{2} \right)\]  is 


Find the value of `(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)`


If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.


If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = –(xy + 1)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×