English

A Cos a + B Cos B + C Cos C = 2b Sin a Sin C - Mathematics

Advertisements
Advertisements

Question

a cos + b cos B + c cos C = 2sin sin 

Solution

\[\text{ By sine rule, we know that }\]

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \left( say \right)\]

\[ \Rightarrow a = k \sin A, b = k \sin B, c = k \sin C\]

\[\text{ Now }, \]

\[LHS = a \cos A + b \cos B + c \cos C\]

\[ = k \sin A \cos A + k \sin B \cos B + k \sin C \cos C\]

\[ = \frac{k}{2} \left( 2 \sin A \cos A + 2 \sin B \cos B + 2 \sin C \cos C \right)\]

\[ = \frac{k}{2} \left( \sin 2A + \sin 2B + 2 \sin C \cos C \right)\]

\[ = \frac{k}{2} \left( 2 \sin \frac{2A + 2B}{2}\cos\frac{2A - 2B}{2} + 2 \sin C \cos C \right)\]

\[ = \frac{k}{2} \left( 2 \sin \left( A + B \right) \cos \left( A - B \right) + 2 \sin C \cos C \right)\]

\[ = \frac{k}{2} \left( 2 \sin \left( \pi - C \right) \cos \left( A - B \right) + 2 \sin C \cos C \right) \left( \because A + B + C = \pi \right)\]

\[ = \frac{k}{2} \left( 2 \sin C \cos \left( A - B \right) + 2 \sin C \cos C \right)\]

\[ = \frac{k}{2} \times 2 \sin C\left( \cos \left( A - B \right) + \cos C \right)\]

\[ = k \sin C\left( 2 \cos \left( \frac{A - B + C}{2} \right)\cos \left( \frac{A - B - C}{2} \right) \right)\]

\[ = k \sin C\left( 2 \cos \left( \frac{\pi - B - B}{2} \right)\cos \left( \frac{B + C - A}{2} \right) \right) \left( \because A + B + C = \pi \right)\]

\[ = k \sin C\left( 2 \cos \left( \frac{\pi - 2B}{2} \right)\cos \left( \frac{\pi - 2A}{2} \right) \right) \left( \because A + B + C = \pi \right)\]

\[ = k \sin C\left( 2 \cos \left( \frac{\pi}{2} - B \right)\cos \left( \frac{\pi}{2} - A \right) \right)\]

\[ = 2k \sin C\left( \sin B \sin A \right)\]

\[ = 2 \left( k \sin B \right) \sin A \sin C\]

\[ = 2b \sin A \sin C\]

\[ = RHS\]

\[ \therefore LHS = RHS\]

Hence, a cos + b cos B + c cos C = 2sin sin C.

shaalaa.com
Sine and Cosine Formulae and Their Applications
  Is there an error in this question or solution?
Chapter 10: Sine and cosine formulae and their applications - Exercise 10.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 10 Sine and cosine formulae and their applications
Exercise 10.2 | Q 11 | Page 25

RELATED QUESTIONS

If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides. 


In triangle ABC, prove the following:

\[\frac{c}{a - b} = \frac{\tan\left( \frac{A}{2} \right) + \tan \left( \frac{B}{2} \right)}{\tan \left( \frac{A}{2} \right) - \tan \left( \frac{B}{2} \right)}\]

 


In any triangle ABC, prove the following: 

\[\sin \left( \frac{B - C}{2} \right) = \frac{b - c}{a} \cos\frac{A}{2}\]

 


In triangle ABC, prove the following: 

\[\frac{a^2 - c^2}{b^2} = \frac{\sin \left( A - C \right)}{\sin \left( A + C \right)}\] 


In triangle ABC, prove the following: 

\[b \sin B - c \sin C = a \sin \left( B - C \right)\]

 


In triangle ABC, prove the following: 

\[a^2 \sin \left( B - C \right) = \left( b^2 - c^2 \right) \sin A\]

 


In triangle ABC, prove the following: 

\[\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}\]

 


In triangle ABC, prove the following:

\[\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} - \frac{1}{a^2} - \frac{1}{b^2}\]

 


In ∆ABC, prove that: \[a \sin\frac{A}{2} \sin \left( \frac{B - C}{2} \right) + b \sin \frac{B}{2} \sin \left( \frac{C - A}{2} \right) + c \sin \frac{C}{2} \sin \left( \frac{A - B}{2} \right) = 0\]


In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]


In triangle ABC, prove the following: 

\[a \cos A + b\cos B + c \cos C = 2b \sin A \sin C = 2 c \sin A \sin B\]

 


\[a \left( \cos B \cos C + \cos A \right) = b \left( \cos C \cos A + \cos B \right) = c \left( \cos A \cos B + \cos C \right)\]


In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\] 


The upper part of a tree broken by the wind makes an angle of 30° with the ground and the distance from the root to the point where the top of the tree touches the ground is 15 m. Using sine rule, find the height of the tree. 


In \[∆ ABC, if a = 5, b = 6 a\text{ and } C = 60°\]  show that its area is \[\frac{15\sqrt{3}}{2} sq\].units. 


In ∆ABC, prove the following: \[b \left( c \cos A - a \cos C \right) = c^2 - a^2\]


In ∆ABC, prove  the following: 

\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]

 


In ∆ABC, prove that  \[a \left( \cos B + \cos C - 1 \right) + b \left( \cos C + \cos A - 1 \right) + c\left( \cos A + \cos B - 1 \right) = 0\]


In ∆ABC, prove the following: 

\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]


In \[∆ ABC, \frac{b + c}{12} = \frac{c + a}{13} = \frac{a + b}{15}\]  Prove that \[\frac{\cos A}{2} = \frac{\cos B}{7} = \frac{\cos C}{11}\] 


If in \[∆ ABC, \cos^2 A + \cos^2 B + \cos^2 C = 1\] prove that the triangle is right-angled. 

 


In \[∆ ABC \text{ if } \cos C = \frac{\sin A}{2 \sin B}\] prove that the triangle is isosceles.  


Two ships leave a port at the same time. One goes 24 km/hr in the direction N 38° E and other travels 32 km/hr in the direction S 52° E. Find the distance between the ships at the end of 3 hrs. 


Answer  the following questions in one word or one sentence or as per exact requirement of the question.In a ∆ABC, if b =\[\sqrt{3}\] and \[\angle A = 30°\]  find a

   

Answer  the following questions in one word or one sentence or as per exact requirement of the question. 

In a ∆ABC, if b = 20, c = 21 and \[\sin A = \frac{3}{5}\] 

 


Answer the following questions in one word or one sentence or as per exact requirement of the question. 

If the sides of a triangle are proportional to 2, \[\sqrt{6}\] and \[\sqrt{3} - 1\] find the measure of its greatest angle. 


Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] = 


Mark the correct alternative in each of the following:
If the sides of a triangle are in the ratio \[1: \sqrt{3}: 2\] then the measure of its greatest angle is 


Mark the correct alternative in each of the following: 

In any ∆ABC, 2(bc cosA + ca cosB + ab cosC) = 


Mark the correct alternative in each of the following:

In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]  


Find the value of `(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)`


If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×