Advertisements
Advertisements
Question
If in \[∆ ABC, \cos^2 A + \cos^2 B + \cos^2 C = 1\] prove that the triangle is right-angled.
Solution
Let ABC be any triangle.
In \[∆ ABC\]
\[\cos^2 A + \cos^2 B + \cos^2 C = 1\]
\[ \Rightarrow \cos^2 A + \cos^2 B + \cos^2 \left[ \pi - \left( B + A \right) \right] = 1 \left( \because A + B + C = \pi \right)\]
\[ \Rightarrow \cos^2 A + \cos^2 B + \cos^2 \left( B + A \right) = 1\]
\[ \Rightarrow \cos^2 A + \cos^2 B = 1 - \cos^2 \left( B + A \right)\]
\[ \Rightarrow \cos^2 A + \cos^2 B = \sin^2 \left( B + A \right)\]
\[ \Rightarrow \cos^2 A + \cos^2 B = \left( \sin A\cos B + \cos A\sin B \right)^2 \]
\[ \Rightarrow \cos^2 A + \cos^2 B = \sin^2 A \cos^2 B + \cos^2 A \sin^2 B + 2\sin A\sin B\cos A\cos B\]
\[ \Rightarrow \cos^2 A\left( 1 - \sin^2 B \right) + \cos^2 B\left( 1 - \sin^2 A \right) = 2\sin A\sin B\cos A\cos B\]
\[ \Rightarrow 2 \cos^2 A \cos^2 B = 2\sin A\sin B\cos A\cos B\]
\[ \Rightarrow \cos A\cos B = \sin A\sin B\]
\[ \Rightarrow \cos A\cos B - \sin A\sin B = 0\]
\[ \Rightarrow \cos \left( A + B \right) = 0\]
\[ \Rightarrow \cos \left( A + B \right) = \cos {90}^° \]
\[ \Rightarrow A + B = {90}^°\]
\[ \Rightarrow C = {90}^° \left( \because A + B + C = {180}^° \right)\]
Hence, \[∆\]ABC is right angled.
APPEARS IN
RELATED QUESTIONS
If in ∆ABC, ∠A = 45°, ∠B = 60° and ∠C = 75°, find the ratio of its sides.
In ∆ABC, if a = 18, b = 24 and c = 30 and ∠c = 90°, find sin A, sin B and sin C.
In triangle ABC, prove the following:
In triangle ABC, prove the following:
\[\left( a - b \right) \cos \frac{C}{2} = c \sin \left( \frac{A - B}{2} \right)\]
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In triangle ABC, prove the following:
In ∆ABC, prove that: \[\frac{b \sec B + c \sec C}{\tan B + \tan C} = \frac{c \sec C + a \sec A}{\tan C + \tan A} = \frac{a \sec A + b \sec B}{\tan A + \tan B}\]
In triangle ABC, prove the following:
In ∆ABC, prove that \[a \left( \cos C - \cos B \right) = 2 \left( b - c \right) \cos^2 \frac{A}{2} .\]
In ∆ABC, prove that if θ be any angle, then b cosθ = c cos (A − θ) + a cos (C + θ).
In ∆ABC, if sin2 A + sin2 B = sin2 C. show that the triangle is right-angled.
If the sides a, b and c of ∆ABC are in H.P., prove that \[\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2} \text{ and } \sin^2 \frac{C}{2}\]
In ∆ ABC, if a = 18, b = 24 and c = 30, find cos A, cos B and cos C.
In ∆ABC, prove the following:
\[2 \left( bc \cos A + ca \cos B + ab \cos C \right) = a^2 + b^2 + c^2\]
In ∆ABC, prove the following:
\[\left( c^2 - a^2 + b^2 \right) \tan A = \left( a^2 - b^2 + c^2 \right) \tan B = \left( b^2 - c^2 + a^2 \right) \tan C\]
In ∆ABC, prove the following:
\[a^2 = \left( b + c \right)^2 - 4 bc \cos^2 \frac{A}{2}\]
In ∆ABC, prove the following:
\[4\left( bc \cos^2 \frac{A}{2} + ca \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} \right) = \left( a + b + c \right)^2\]
In \[∆ ABC, if \angle B = 60°,\] prove that \[\left( a + b + c \right) \left( a - b + c \right) = 3ca\]
Answer the following questions in one word or one sentence or as per exact requirement of the question.
If in a ∆ABC, \[\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}\] then find the measures of angles A, B, C.
Answer the following questions in one word or one sentence or as per exact requirement of the question.
In any triangle ABC, find the value of \[a\sin\left( B - C \right) + b\sin\left( C - A \right) + c\sin\left( A - B \right)\
Mark the correct alternative in each of the following:
In any ∆ABC, \[\sum^{}_{} a^2 \left( \sin B - \sin C \right)\] =
Mark the correct alternative in each of the following:
In a ∆ABC, if a = 2, \[\angle B = 60°\] and\[\angle C = 75°\]
Mark the correct alternative in each of the following:
In a ∆ABC, if \[\left( c + a + b \right)\left( a + b - c \right) = ab\] then the measure of angle C is
Mark the correct alternative in each of the following:
In any ∆ABC, \[a\left( b\cos C - c\cos B \right) =\]
Find the value of `(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)`
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.