English

If f(x) = cos2x + sec2x, then ______. [Hint: A.M ≥ G.M.] - Mathematics

Advertisements
Advertisements

Question

If f(x) = cos2x + sec2x, then ______.

[Hint: A.M ≥ G.M.]

Options

  • f(x) < 1

  • f(x) = 1

  • 2 < f(x) < 1

  • f(x) ≥ 2

MCQ
Fill in the Blanks

Solution

If f(x) = cos2x + sec2x, then f(x) ≥ 2.

Explanation:

Given that: f(x) = cos2x + sec2x

We know that AM ≥ GM

⇒ `(cos^2 x + sec^2x)/2 ≥ sqrt(cos^2x . sec^2x)`

⇒ `(cos^2x + sec^2)/2 ≥ 1`

⇒ cos2x + sec2x ≥ 2

⇒ f(x) ≥ 2

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 55]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 31 | Page 55

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove the following:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


Prove that: `(cos x  + cos y)^2 + (sin x - sin y )^2 =  4 cos^2  (x + y)/2`


If \[\sin A = \frac{1}{2}, \cos B = \frac{\sqrt{3}}{2}\], where \[\frac{\pi}{2}\] < A < π and 0 < B < \[\frac{\pi}{2}\], find the following:
tan (A - B)


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


If \[\cos A = - \frac{12}{13}\text{ and }\cot B = \frac{24}{7}\], where A lies in the second quadrant and B in the third quadrant, find the values of the following:
tan (A + B)


Prove that:
\[\cos^2 45^\circ - \sin^2 15^\circ = \frac{\sqrt{3}}{4}\]


Prove that:
sin2 (n + 1) A − sin2 nA = sin (2n + 1) A sin A.


Prove that:
cos2 A + cos2 B − 2 cos A cos B cos (A + B) = sin2 (A + B)


Prove that:
tan 36° + tan 9° + tan 36° tan 9° = 1


If tan A = x tan B, prove that
\[\frac{\sin \left( A - B \right)}{\sin \left( A + B \right)} = \frac{x - 1}{x + 1}\]


If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

If sin α + sin β = a and cos α + cos β = b, show that

\[\cos \left( \alpha + \beta \right) = \frac{b^2 - a^2}{b^2 + a^2}\]

Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 


Show that sin 100° − sin 10° is positive. 


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


If in ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


If \[\tan\theta = \frac{1}{2}\] and \[\tan\phi = \frac{1}{3}\], then the value of \[\tan\phi = \frac{1}{3}\] is 

 

 


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


If tanα = `m/(m +  1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.


The value of tan3A - tan2A - tanA is equal to ______.


If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.


If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.


If sinx + cosx = a, then |sinx – cosx| = ______.


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


In the following match each item given under the column C1 to its correct answer given under the column C2:

Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×