मराठी

If X Lies in the First Quadrant and Cos X = 8 17 , Then Prove That: Cos ( π 6 + X ) + Cos ( π 4 − X ) + Cos ( 2 π 3 − X ) = ( √ 3 − 1 2 + 1 √ 2 ) 23 17 - Mathematics

Advertisements
Advertisements

प्रश्न

If x lies in the first quadrant and \[\cos x = \frac{8}{17}\], then prove that:

\[\cos \left( \frac{\pi}{6} + x \right) + \cos \left( \frac{\pi}{4} - x \right) + \cos \left( \frac{2\pi}{3} - x \right) = \left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)\frac{23}{17}\]

 

टीपा लिहा

उत्तर

\[\text{ Given: }0 < x < \frac{\pi}{2}\]
\[\text{ Now, }\sin x = \sqrt{1 - \cos^2 x} = \sqrt{1 - \frac{64}{289}} = \frac{15}{17}\]
\[\text{ LHS }= \cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{4} - x \right) + \cos\left( \frac{2\pi}{3} - x \right)\]
\[ = \cos(30 + x) + \cos(45 - x) + \cos(120 - x)\]
\[ = \cos 30^\circ \cos x - \sin30^\circ \sin x + \cos 45^\circ \cos x + \sin 45^\circ \sin x + \cos120^\circ \cos x + \sin120^\circ \sin x \left\{\text{ Using formulas of }\cos(A + B)\text{ and }\cos(A - B \right\})\]
\[ = \cos x(\cos 30^\circ + \cos 45^\circ + \cos120) + \sin x( - \sin 30^\circ + \sin 45^\circ + \sin 120^\circ)\]
\[ = \frac{8}{17}\left( \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} - \frac{1}{2} \right) + \frac{15}{17}\left( - \frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2} \right) \]
\[ = \frac{8}{17}\left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right) + \frac{15}{17}\left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right)\]
\[ = \frac{23}{17}\left( \frac{\sqrt{3} - 1}{2} + \frac{1}{\sqrt{2}} \right) \]
 = RHS
Hence proved .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Values of Trigonometric function at sum or difference of angles - Exercise 7.1 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 7 Values of Trigonometric function at sum or difference of angles
Exercise 7.1 | Q 24 | पृष्ठ २०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that  `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


Find the value of: sin 75°


Prove the following:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x


Prove the following:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


Prove the following:

cos2 2x – cos2 6x = sin 4x sin 8x


Prove the following:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


Prove the following:

`(sin x -  siny)/(cos x + cos y)= tan  (x -y)/2`


Prove the following:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


Evaluate the following:
sin 78° cos 18° − cos 78° sin 18°


Evaluate the following:
cos 47° cos 13° − sin 47° sin 13°


Prove that
\[\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin \left( A + B \right)}{\sin \left( A - B \right)}\]


Prove that:

\[\sin\left( \frac{4\pi}{9} + 7 \right)\cos\left( \frac{\pi}{9} + 7 \right) - \cos\left( \frac{4\pi}{9} + 7 \right)\sin\left( \frac{\pi}{9} + 7 \right) = \frac{\sqrt{3}}{2}\]

 


If \[\tan A = \frac{m}{m - 1}\text{ and }\tan B = \frac{1}{2m - 1}\], then prove that \[A - B = \frac{\pi}{4}\].


Prove that:
\[\frac{\sin \left( A - B \right)}{\cos A \cos B} + \frac{\sin \left( B - C \right)}{\cos B \cos C} + \frac{\sin \left( C - A \right)}{\cos C \cos A} = 0\]

 


Prove that:
\[\tan\frac{\pi}{12} + \tan\frac{\pi}{6} + \tan\frac{\pi}{12}\tan\frac{\pi}{6} = 1\]


Prove that:
tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x


Find the maximum and minimum values of each of the following trigonometrical expression:

sin x − cos x + 1


Show that sin 100° − sin 10° is positive. 


If 12 sin x − 9sin2 x attains its maximum value at x = α, then write the value of sin α.


Write the interval in which the value of 5 cos x + 3 cos \[\left( x + \frac{\pi}{3} \right) + 3\] lies. 


If tan (A + B) = p and tan (A − B) = q, then write the value of tan 2B


If A + B = C, then write the value of tan A tan B tan C.


If \[\cos P = \frac{1}{7}\text{ and }\cos Q = \frac{13}{14}\], where P and Q both are acute angles. Then, the value of P − Q is

 


If tan (π/4 + x) + tan (π/4 − x) = a, then tan2 (π/4 + x) + tan2 (π/4 − x) =


The maximum value of \[\sin^2 \left( \frac{2\pi}{3} + x \right) + \sin^2 \left( \frac{2\pi}{3} - x \right)\] is


Express the following as the sum or difference of sines and cosines:
2 cos 3x sin 2xa


Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ


If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.


Match each item given under column C1 to its correct answer given under column C2.

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2

[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]


If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]


If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.


State whether the statement is True or False? Also give justification.

If tanA = `(1 - cos B)/sinB`, then tan2A = tanB


State whether the statement is True or False? Also give justification.

If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×