Advertisements
Advertisements
Question
Show that :
Solution
\[LHS = 2\sin25^\circ \cos 115^\circ\]
\[ = \frac{\sin \left( 25^\circ + 115^\circ \right) + \sin \left( 25^\circ - 115^\circ \right)}{2} \left[ \because \sin A \cos B = \frac{1}{2}\left\{ \sin (A + B) + \sin (A - B) \right\} \right]\]
\[ = \frac{\sin 140^\circ + \sin \left( - 90^\circ \right)}{2}\]
\[ = \frac{\sin 140^\circ - \sin \left( 90^\circ \right)}{2}\]
\[ = \frac{\sin 140^\circ - 1}{2} \]
\[RHS = \frac{\sin 140^\circ - 1}{2}\]
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of cos 52° + cos 68° + cos 172° is
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`