Advertisements
Advertisements
Question
Prove that:
Solution
Consider LHS:
\[ \frac{\sin A + \sin B}{\sin A - \sin B}\]
\[ = \frac{2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)}{2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)} \left\{ \because \sin A + \sin B = 2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right), and \sin A - \sin B = 2\sin \left( \frac{A - B}{2} \right) \cos\left( \frac{A + B}{2} \right) \right\}\]
\[ = \frac{\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)}{\sin \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right)}\]
\[ = \tan \left( \frac{A + B}{2} \right) cot \left( \frac{A - B}{2} \right)\]
= RHS
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
cos 40° + cos 80° + cos 160° + cos 240° =
sin 163° cos 347° + sin 73° sin 167° =
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`