Advertisements
Advertisements
Question
Prove that:
Solution
Consider LHS:
\[ \frac{\cos A + cos B}{\cos B - \cos A}\]
\[ = \frac{2\cos \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right)}{2\sin \left( \frac{A + B}{2} \right) \sin \left( \frac{A - B}{2} \right)} \left[ \because \cos A + \cos B = 2\cos \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right) and \cos A - \cos B = 2\sin \left( \frac{A + B}{2} \right) cos \left( \frac{B - A}{2} \right) \right]\]
\[ = \frac{\cos \left( \frac{A - B}{2} \right) \cos \left( \frac{A + B}{2} \right)}{\sin \left( \frac{A + B}{2} \right) sin \left( \frac{A - B}{2} \right)}\]
\[ = \cot\left( \frac{A + B}{2} \right)\cot\left( \frac{A - B}{2} \right)\]
=RHS
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate-
cos 20° + cos 100° + cos 140°
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: