Advertisements
Advertisements
Question
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Solution
\[ = \frac{1}{2}\left[ 2\cos 40^\circ \cos 80^\circ \right] \cos 160^\circ\]
\[ = \frac{1}{2}\left[ \cos \left( 40^\circ + 80^\circ \right) + \cos \left( 40^\circ - 80^\circ \right) \right] \cos 160^\circ\]
\[ = \frac{1}{2}\left[ \cos 120^\circ + \cos \left( - 40^\circ \right) \right] \cos 160^\circ\]
\[ = \frac{1}{2}\cos \left( 160^\circ \right)\left[ - \frac{1}{2} + \cos 40^\circ \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{2}\cos 160^\circ \cos 40^\circ\]
\[= - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ 2\cos 160^\circ \cos 40^\circ \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos \left( 160^\circ + 40^\circ \right) + \cos \left( 160^\circ - 40^\circ \right) \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos 200^\circ + \cos 120^\circ \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\left[ \cos \left( 360^\circ - 160^\circ \right) - \frac{1}{2} \right]\]
\[ = - \frac{1}{4}\cos 160^\circ + \frac{1}{4}\cos 160^\circ - \frac{1}{8} \left[ \because \cos \left( 360^\circ - 160^\circ \right) = \cos 160^\circ \right]\]
\[ = - \frac{1}{8} = RHS\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Show that :
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
The value of sin 50° − sin 70° + sin 10° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate:
sin 50° – sin 70° + sin 10°
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`