Advertisements
Advertisements
Question
Solution
Given:
sin 2A = λ sin 2B
\[\Rightarrow \frac{\sin2A}{\sin2B} = \lambda\]
\[\Rightarrow \frac{\sin2A + \sin2B}{\sin2A - \sin2B} = \frac{\lambda + 1}{\lambda - 1}\]
\[ \Rightarrow \frac{2\sin\left( \frac{2A + 2B}{2} \right)\cos\left( \frac{2A - 2B}{2} \right)}{2\sin\left( \frac{2A - 2B}{2} \right)\cos\left( \frac{2A + 2B}{2} \right)} = \frac{\lambda + 1}{\lambda - 1} \left[ \because \sin A + \sin B = 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) and \sin A - \sin B = 2\sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right) \right]\]
\[ \Rightarrow \frac{\sin\left( A + B \right)\cos\left( A - B \right)}{\sin\left( A - B \right)\cos\left( A + B \right)} = \frac{\lambda + 1}{\lambda - 1}\]
\[ \Rightarrow \tan\left( A + B \right)\cot\left( A - B \right)=\frac{\lambda + 1}{\lambda - 1}\]
\[\Rightarrow\frac{\tan\left( A + B \right)}{\tan\left( A - B \right)}=\frac{\lambda + 1}{\lambda - 1}\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
The value of cos 52° + cos 68° + cos 172° is
cos 35° + cos 85° + cos 155° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0