Advertisements
Advertisements
Question
Prove that:
sin 47° + cos 77° = cos 17°
Solution
Consider LHS:
\[\sin 47^\circ + \cos 77^\circ\]
\[ = \sin 47^\circ + \cos \left( 90^\circ - 13^\circ \right)\]
\[ = \sin 47^\circ + \sin 13^\circ\]
\[ = 2\sin \left( \frac{47^\circ + 13^\circ}{2} \right) \cos \left( \frac{47^\circ - 13^\circ}{2} \right) \left\{ \because \sin A + \sin B = 2\sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \right\}\]
\[ = 2\sin 30^\circ \cos 17^\circ\]
\[ = 2 \times \frac{1}{2}\cos 17^\circ\]
\[ = \cos 17^\circ\]
= RHS
Hence, LHS = RHS.
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of cos 52° + cos 68° + cos 172° is
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
cos 35° + cos 85° + cos 155° =
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate-
cos 20° + cos 100° + cos 140°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: