हिंदी

Find the general solution of the following equation: sin⁡3x+cos⁡2x=0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the following equation:

sin3x+cos2x=0
योग

उत्तर

Given,

sin 3x + cos 2x = 0

We know that: sin θ = cos (π2-θ)

∴ cos 2x = −sin 3x

⇒ cos 2x = −cos(π2-3x)

We know that: −cos θ = cos (π – θ)

∴ cos 2x = cos(π-(π2-3x))

⇒ cos 2x cos (π2+3x)

If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

From above expression and on comparison with standard equation we have:

y=(π2+3x)

∴ 2x = 2nπ ± (π2+3x)

Hence, 

2x=2nπ+π2+3xor2x=2nπ-π2-3x

x=-π2-2nπor5x=2nπ-π2

x=-π2(1+4n)orx=π10(4n-1)

x=-π2(4n+1)orπ10(4n-1), where n ∈ Z

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 2.12 | पृष्ठ २१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation tanx=3


Find the general solution of the equation cos 4 x = cos 2 x


If sinx+cosx=m, then prove that sin6x+cos6x=43(m21)24, where m22


If Tn=sinnx+cosnx, prove that T3T5T1=T5T7T3

 


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Find x from the following equations:
cosec(π2+θ)+xcosθcot(π2+θ)=sin(π2+θ)


Prove that:
tan4πcos3π2sin5π6cos2π3=14


If π2<x<π, then 1sinx1+sinx+1+sinx1sinx is equal to


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan x=15 and θ lies in the IV quadrant, then the value of cos x is

 

sin6 A + cos6 A + 3 sin2 A cos2 A =


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If x sin 45° cos2 60° = tan260cosec30sec45cot230, then x =

 

If cosecx+cotx=112, then tan x =

 


Which of the following is incorrect?


The value of tan1tan2tan3...tan89 is

 

Find the general solution of the following equation:

sin2x=cos3x

Solve the following equation:

tan2x+(13)tanx3=0

Solve the following equation:

cosx+cos3xcos2x=0

Solve the following equation:

sin3xsinx=4cos2x2

Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the solution set of the equation 

(2cosx+1)(4cosx+5)=0 in the interval [0, 2π].

If cosx+3sinx=2, then x=

 


The number of solution in [0, π/2] of the equation cos3xtan5x=sin7x is 


The solution of the equation cos2x+sinx+1=0 lies in the interval


The number of values of x in the interval [0, 5 π] satisfying the equation 3sin2x7sinx+2=0 is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then sin(α+β)sinαsinβ is equal to


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.