हिंदी

If Tan X = − 1 √ 5 and θ Lies in the Iv Quadrant, Then the Value of Cos X is - Mathematics

Advertisements
Advertisements

प्रश्न

If tan x=15 and θ lies in the IV quadrant, then the value of cos x is

 

विकल्प

  • 56

     

  • 26

     

  • 12

     

  • 16

     

MCQ

उत्तर

56
 In the fourth quadrant, cosx and secx are positive . 
cosx=1secx
=1sec2x
=11+tan2x
=11+(15)2
=165
=56
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.5 | Q 9 | पृष्ठ ४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation sec x = 2


Find the general solution of cosec x = –2


If tanx=ba , then find the values of a+bab+aba+b.


If cotx(1+sinx)=4m and cotx(1sinx)=4n, (m2+n2)2=mn


If sinx+cosx=m, then prove that sin6x+cos6x=43(m21)24, where m22


Prove the:
1sinx1+sinx+1+sinx1sinx=2cosx, where π2<x<π


Prove that:
sec(3π2x)sec(x5π2)+tan(5π2+x)tan(x3π2)=1.


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:
tan4πcos3π2sin5π6cos2π3=14


Prove that:
sin13π3sin2π3+cos4π3sin13π6=12


Prove that:

sin10π3cos13π6+cos8π3sin5π6=1

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


The value of cos1cos2cos3...cos179 is

 

Find the general solution of the following equation:

cosecx=2

Find the general solution of the following equation:

sin2x=cos3x

Find the general solution of the following equation:

tanpx=cotqx

 


Find the general solution of the following equation:

sin2x+cosx=0

Solve the following equation:
sin2xcosx=14


Solve the following equation:
cotx+tanx=2

 


Solve the following equation:
5cos2x+7sin2x6=0


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the number of points of intersection of the curves

2y=1 and y=cosecx

Write the solution set of the equation 

(2cosx+1)(4cosx+5)=0 in the interval [0, 2π].

If 2sin2x=3cosx. where 0x2π, then find the value of x.


If 4sin2x=1, then the values of x are

 


The solution of the equation cos2x+sinx+1=0 lies in the interval


If cosx=12 and 0 < x < 2\pi, then the solutions are


The number of values of x in the interval [0, 5 π] satisfying the equation 3sin2x7sinx+2=0 is


Find the principal solution and general solution of the following:
sin θ = -12


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
tanθ+tan(θ+π3)+tan(θ+2π3)=3


Solve the following equations:
cos 2θ = 5+14


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.